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Figure 1: We proposed DeepBasis, a deep-learning-based single-image SVBRDF capture method. Here, we show 4 real-world
scenes and 4 synthetic scenes. For each scene, the left-top image is the input image lit by a point light source, and the center
visualization is the re-rendering of the estimated material under environment lighting. Thanks to the joint prediction of basis
materials and the blending weights, our method can effectively utilize the spatial correlations of materials, thus recovering
reflections with rich details.

ABSTRACT
Recovering spatial-varying bi-directional reflectance distribution
function (SVBRDF) from a single hand-held captured image has
been a meaningful but challenging task in computer graphics. Ben-
efiting from the learned data priors, some previous methods can
utilize the potential material correlations between image pixels
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to serve for SVBRDF estimation. To further reduce the ambigu-
ity from single-image estimation, it is necessary to integrate ad-
ditional explicit material correlations. Given the flexible expres-
sive ability of basis material assumption, we propose DeepBasis,
a deep-learning-based method integrated with this assumption. It
jointly predicts basis materials and their blending weights. Then
the estimated SVBRDF is their linear combination. To facilitate the
extraction of data priors, we introduce a two-level basis model to
keep the sufficient representative while using a fixed number of
basis materials. Moreover, considering the absence of ground-truth
basis materials and weights during network training, we propose
a variance-consistency loss and adopt a joint prediction strategy,
thereby enabling the existing SVBRDF dataset available for train-
ing. Additionally, due to the hand-held capture setting, the exact
lighting directions are unknown.Wemodel the lighting direction es-
timation as a sampling problem and propose an optimization-based
algorithm to find the optimal estimation. Quantitative evaluation
and qualitative analysis demonstrate that DeepBasis can produce
a higher quality SVBRDF estimation than previous methods. All
source codes will be publicly released.
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1 INTRODUCTION
Conveniently estimating the spatial-varying bi-directional reflectance
distribution function (SVBRDF) from a single hand-held captured
image has been a long-standing problem in computer graphics, with
applications ranging from visual product design to virtual/mixed re-
ality and cultural heritage. Such estimation is an inherently ill-posed
task because each image pixel value is the only one appearance
measurement under its corresponding BRDF, and many different
BRDFs can yield the same appearance. Thus, additional information
needs to be mined to provide more constraints.

Given the learned prior from data, the potential correlations
between image pixels can be utilized to serve for single-image
SVBRDF estimation [Li et al. 2017; Ye et al. 2018; Li et al. 2018b,a;
Deschaintre et al. 2018; Vecchio et al. 2021; Zhou and Kalantari
2021; Guo et al. 2021; Zhou and Kalantari 2022]. Compared with the
implicit correlations learned totally from data, some methods [Zhao
et al. 2020; Wen et al. 2022] introduce the self-similarity material
assumption [Aittala et al. 2015, 2016] into learning-based methods.
It provides an additional explicit constraint above the data priors,
thereby further reducing the ambiguity of estimated reflectance
maps. However, materials with the self-similar property are very
limited, and applying this assumption affects the diversity of cap-
tured materials. Therefore, there is a crucial need to pursue a more
flexible assumption model that can explicitly establish strong mate-
rial constraints while adapting to various target materials. Given
that data priors are derived from the common features extracted
from a substantial amount of data [LeCun et al. 2015; Goodfellow
et al. 2016], to integrate with data priors more effectively, this model
should possess a consistent and fixed form to facilitate the efficient
extraction of common features. Meanwhile, there should be a large
amount of relevant training data that can train with this model.

In this paper, we propose DeepBasis, a deep-learning-based ap-
proach for single-image SVBRDF estimation. It integrates with
the well-known basis material assumption [Matusik et al. 2003b,a;
Goldman et al. 2010; Zhou et al. 2016; Kim and Lee 2022], and
jointly predicts basis materials and their blending weights. This
assumption posits that an SVBRDF can be represented by a set of
basis materials, thereby establishing explicit spatial correlations.
Meanwhile, the adjustable selection of the number and elemen-
tal composition of basis materials provides sufficient flexibility
to represent a wide range of materials. Technically, our method
includes the following aspects. To facilitate the extraction of data
priors, we introduce a two-level model to divide basis materials into

global and local components. The adaptive combination of these
two components offers the flexible expression capabilities that were
previously achieved by altering the basis number. Therefore, even
with a fixed basis number, the two-level method still retains a wide
representation. To perform training in the absence of ground-truth
basis materials and weights, we adopt a joint prediction for both
bases and weights. It ensures that SVBRDF can be obtained dur-
ing each forward pass, thus enabling the utilization of the existing
SVBRDF dataset for training. Additionally, to address the potential
overlap in the feature extraction of bases and weights during joint
training, we introduce a variation-consistency loss as an additional
constraint for the predicted basis materials. Moreover, considering
the hand-held camera does not guarantee a strict parallel to the
material surface, the lighting directions need to be estimated dur-
ing practical capture. Our observation is that the deviated angle of
the camera from being parallel to the material surface is limited.
Therefore, we model the estimation of real lighting directions as a
sampling problem and propose an optimization-based method to
find the optimal estimation.

We evaluated our methods with synthetic and real-world data.
The results demonstrated that our DeepBasis could produce better
single-image SVBRDF estimation than the existing direct prediction
methods [Deschaintre et al. 2018; Zhou and Kalantari 2021, 2022]
and the optimization-based method [Gao et al. 2019; Guo et al.
2020].

Overall, our method has the following technical contributions:
• We introduced a two-level basis material model that is specif-
ically designed to fully leverage data priors in the context of
basis material assumption.

• We proposed a joint prediction network of basis materi-
als and their blending weights and designed a variation-
consistency loss, such that the training process needs no
ground-truth basis materials and weights.

• Under the hand-held capture setting, we modeled the real
lighting direction estimation as a sampling problem and
proposed an optimization-based method to find the optimal
real lighting directions.

2 RELATEDWORK
Our core idea is to integrate basis material assumption with data
priors. Thus, we reviewed deep-learning-based methods and some
related methods based on spatial correlation assumptions. Further-
more, considering our adopt near-planar material sample assump-
tion, we focused on reviewing methods with the same assumption.
For a more overall discussion of material reflectance acquisition,
please refer to the surveys [Guarnera et al. 2016; Dong 2019].

2.1 SVBRDF Estimation Using Deep Learning
2.1.1 Single Input Image. The approaches in this category focus on
utilizing material priors learned from data to serve for single-image
SVBRDF estimation. Li et al. [2017] proposed a self-augmentation
strategy to obtain training data, and Ye et al. [2018] further mini-
mize the requirements for labeled data. Furthermore, some synthetic
datasets [Deschaintre et al. 2018; Li et al. 2018a] of SVBRDFs have
been proposed, which motivated many SVBRDF reconstruction
work based on deep learning [Zhou and Kalantari 2021; Guo et al.
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2021; Vecchio et al. 2021; Zhou and Kalantari 2022]. Deschaintre
et al.[2020] also proposed a fine-tuning method to capture large-
scale planar materials with a few exemplar SVBRDFs. Martin et al.
[2022] captured SVBRDF in the wild. Zhou et al. [2022] recently
proposed a model to generate tileable SVBRDF. These methods rely
on the learned prior from data to implicitly utilize spatial correla-
tions on the target material. In contrast, our method introduced
basis material assumption into deep learning, explicitly building
the correlations to make deep learning easily extract the required
material feature.

2.1.2 Any Number of Input Images. Deschaintre et al. [2019] ex-
panded their single-image work to accommodate any number of
input images by introducing an order-independent fusing layer of
images. Ye et al. [2021] estimated high-resolution SVBRDF from
a flash-lit close-up video sequence captured by a mobile phone.
Besides, latent embedded spaces constructed by deep neural net-
works [Gao et al. 2019; Guo et al. 2020] have also been proposed
for SVBRDF optimization. Although these methods could also han-
dle the single-input image, employing multiple images is typically
necessary to achieve accurate estimation and avoid overfitting.

2.2 SVBRDF Estimation with Spatial
Assumption

2.2.1 Stationary Material Assumption. Wang et al. [2011] proposed
that the mesostructure of material surface can be described as a
stationary stochastic process. Aittala et al. [2015; 2016] extended
the assumption to material reflectance, where similar reflectance
properties exist at many different points on the material surface.
Based on this, they proposed an optimization-based scheme to
reconstruct stochastic SVBRDF using a flash and no-flash image
pair.

Leveraging self-similarity assumption, some methods [Zhao et al.
2020; Henzler et al. 2021; Wen et al. 2022] designed an unsupervised
generative neural network trained using different small tiles of an
input image with similar repetitive features. These methods prove
that explicitly defining material correlations in deep learning can
effectively improve the prediction accuracy of SVBRDF. However,
compared to the basis material assumption, the applied range of
the stationary assumption is extremely limited.

2.2.2 Basis Material Assumption. Matusik et al. [2003a; 2003b]
proved that any BRDF could be represented by a linear combination
of some collected BRDFs. Some methods [Lensch et al. 2003; Chen
et al. 2014; Lawrence et al. 2006] extended this observation into
SVBRDF estimation and assumed that SVBRDF can be blended by a
sparse set of basis BRDFs, which exploits the correlations between
different material points. Besides, a pre-collected set of basis materi-
als and sparse blend prior have been employed to reduce the number
of input images [Dong et al. 2010; Ren et al. 2011]. Furthermore, a
series of methods [Goldman et al. 2010; Zhou et al. 2016; Nam et al.
2018; Alldrin et al. 2008] integrated the pre-collection process of
basis materials into an iterative optimization framework along with
the blending weights. To improve the effect of optimization, Kim
and Lee [2022] proposed a deep embedding clustering-based joint
scheme to simultaneously update basis materials and their blend-
ing weights. These methods successfully integrate basis material

assumption into optimization-based SVBRDF estimation. However,
their effectiveness in estimating SVBRDF with sparse measure-
ments, particularly from a single measurement, is constrained by
the lack of general priors learned from data. Moreover, the concept
of basis materials has also been applied to the representation of
Bidirectional Texture Functions (BTF)[Ruiters et al. 2013; Fan et al.
2023].

3 METHOD
3.1 Problem Formulation
Our goal is to estimate spatially-varying material reflectance prop-
erties from a single color image. The material sample is assumed to
be a nearly planar surface with geometric details that the normal
map can model. Similar to Aittala et al. [2015; 2016], we assume that
the surface is lit by an approximated point light source co-located
with the camera, and the optical axis of the camera is approxi-
mately perpendicular to the material sample surface. Note that, we
do not need to calibrate the intrinsic and extrinsic parameters of
the camera. Moreover, we assume that the reflectance at each ma-
terial surface point can be well-represented by the Cook-Torrance
BRDF model [Cook and Torrance 1981] with GGX microfacet nor-
mal distribution [Walter et al. 2007]. Therefore, each SVBRDF can
be represented by four material maps: normal map 𝑛, diffuse map
𝑑 , roughness map 𝑟 , and specular map 𝑠 . Previous deep learning
methods aim to learn a function 𝐹 to map input image 𝐼 into its
corresponding material maps𝑀 = {𝑛,𝑑, 𝑟, 𝑠}, as follows:

𝑀 = 𝐹 (𝐼 ). (1)

Compared with Eq. 1, introducing basis material assumption, we
do not directly predict material maps, but instead a set of basis ma-
terials {𝑏𝑖 } containing {𝑛𝑖 , 𝑑𝑖 , 𝑟𝑖 , 𝑠𝑖 } and their per-point blending
weights {𝑤𝑖 }. Their linear combination is the estimated material
maps. Note that, in the standard basis material model used in pre-
vious work, 𝑏𝑖 is uniform for each surface point. Moreover, we
explicitly consider the real lighting directions 𝑙 under each acquisi-
tion.

{𝑏𝑖 ,𝑤𝑖 } = 𝐹 (𝐼 , 𝑙), 𝑖 = 1, 2, · · · , 𝑁

𝑀 =

𝑁∑︁
𝑖=1

𝑤𝑖𝑏𝑖 , 𝑤𝑖 , 𝑏𝑖 ∈ [0, 1],
𝑁∑︁
𝑖=1

𝑤𝑖 = 1. (2)

To solve Eq. 2, our algorithm needs to meet three requirements.
Firstly, it must construct an appropriate basis material model that
offers flexibility in adapting to different target materials. Addition-
ally, as the output of 𝐹 , this model should exhibit a fixed form to
facilitate effective training. Secondly, it should find constraints for
training without ground-truth {𝑏𝑖 ,𝑤𝑖 }. Finally, it should utilize the
single input image 𝐼 to estimate the real lighting directions 𝑙 .

3.2 Algorithm
To meet the above requirements, we proposed DeepBasis, as shown
in Fig. 2. It takes a single image as the input and predicts basis
materials and their blending weights through the network. Then,
the estimated SVBRDF is the linear combination of predictions.
DeepBasis has three special designs. The first one is a two-level
basis material model consisting of global and local components. It
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Figure 2: The overview of DeepBasis. It takes a single image as input to the network. The prediction is composed of three
elements: weights, local basis materials, and global basis materials. The estimated SVBRDF is the linear combination of weights
and the summation of these two basis materials. During the training phase, the introduction of variation-consistency loss
ensures that the variation of input SVBRDF is faithfully reflected solely in the predicted basis materials. During the testing
phase, the unknown lighting direction can be estimated by iterative sampling within a lighting direction set.

can express a wide range of materials under a fixed form, thereby
facilitating the extraction of data priors. The second one is the
joint prediction of basis and weight. It makes the network obtain
the estimated SVBRDF during each forward pass. Given that the
linear combination operation is differentiable, the joint prediction
enables the network to be trained with the existing SVBRDF dataset.
Besides, we also designed a variation-consistency loss to offer fur-
ther constraints. The last one is the estimation of real lighting
directions, we proposed an optimization-based method to use mul-
tiple forward passes of the network to find the optimal lighting
directions. Additionally, DeepBasis is well-suited to perform basis
refinement after prediction, which makes the estimated SVBRDF
closer to the input sample. In the following paragraphs, we discuss
the algorithmic details, including two-level basis material model,
variation-consistency loss, lighting direction estimation, and basis
refinement.

3.2.1 Two-level Basis Material model. To offer enough represen-
tation by a small fixed set of basis materials, we proposed that
compared with a set of basis materials {𝑏𝑖 } shared by the whole
material sample in the previous method, each surface point 𝑝 of the
material sample should have its customized basis materials {𝑏𝑖 (𝑝)}.
Thus, the variation of bases on different surface points replaces the
changing of basis number, providing sufficient expression capabil-
ity. Meanwhile, to keep the material correlations for {𝑏𝑖 (𝑝)}, we
proposed a two-level basis material model as follows:

𝑏𝑖 (𝑝) = 𝑏
𝑔

𝑖
+ 𝑏𝑙𝑖 (𝑝), (3)

where 𝑏𝑔
𝑖
is a global basis material shared by all material surface

points and 𝑏𝑙
𝑖
(𝑝) is the local one tailored for each surface point.

Each {𝑏𝑖 (𝑝)} can be regarded as a specific deviation {𝑏𝑙
𝑖
(𝑝)} on

the global basis material {𝑏𝑔
𝑖
}. During the back-propagation, the

gradients to the global bases have the same optimization directions
but those to the local do not. It ensures the global features are
more easily accumulated into global bases, thereby offering global

material constraints similar to the previous standard basis model,
which reduces single-image ambiguity. Meanwhile, the adaptive
combination of these two components offers the flexible expres-
sion capabilities previously achieved by altering the basis number.
Hence, even with a fixed basis number, the two-level model retains
broad expressive capacity, making it well-suited for deep learning
predictions.

3.2.2 Variation-Consistency Loss. Although the joint prediction
strategy makes the existing SVBRDF dataset available for training,
relying solely on the SVBRDF constraint leads to ambiguity in
the prediction of basis materials and blending weights. To solve
it, we design a variation-consistency loss to leverage the variation
between twice network forward passes to further constrain the
training, as follows:

{𝑏 (1)
𝑖

,𝑤
(1)
𝑖

} = 𝐹 (𝑅(𝑀), 𝑙), {𝑏 (2)
𝑖

,𝑤
(2)
𝑖

} = 𝐹 (𝑅(𝑀 + 𝜉), 𝑙)

L𝑣𝑐 = | |{(𝑏 (1)
𝑖

+ 𝜉) − 𝑏
(2)
𝑖

}| |1, (4)

where R(M) is the rendering of SVBRDF. The loss computation
contains twice network forward passes. Through the first one, we
can obtain the predicted basis materials 𝑏 (1)

𝑖
and corresponding

weights𝑤 (1)
𝑖

for the input material sample generated by ground-
truth SVBRDF𝑀 . Before performing the second forward pass, we
manually add a random variation 𝜉 into ground-truth SVBRDF to
obtain a new SVBRDF (𝑀 + 𝜉) for the generation of the second
input sample. Then, through the second pass, we obtain new pre-
dicted bases 𝑏 (2)

𝑖
and weights𝑤 (2)

𝑖
. The variation-consistency loss

requires the first predicted basis materials plus the variation value
equal to the second ones (𝑏 (1)

𝑖
+ 𝜉 = 𝑏

(2)
𝑖

), as shown in Fig. 2 (pink
box).

The variation 𝜉 has two properties. Firstly, it is uniform for
each surface point, ensuring that the spatial structure of the input
material remains unchanged. Secondly, it varies across different
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Figure 3: Real Capture Modeling. (a) shows the ideal capture,
and the generation of the probable capture area. (b) shows
the lighting direction set. (c) shows the real capture with
camera offset, and the real lighting direction can be seen as
a sampling of the lighting direction set.

reflectance maps, enabling the variation-consistency loss to effec-
tively separate the appearance measurements into their respective
maps.

3.2.3 Lighting Direction Estimation. As shown in Fig. 3(a) ideal
capture, when we assume the maximum offset angle is 𝛿 , we can
obtain a probable capture area by a FOV 𝜃 + 2𝛿 , where 𝜃 is the
real camera FOV. In this area, we can calculate each pixel’s light-
ing direction to obtain a set, as shown in Fig. 3(b), and lighting
directions of the real capture shown in Fig. 3(c) must be one of
its sub-areas. Thus, estimating the real lighting directions under
hand-held offset is modeled as finding the optimal sampling from
this set. The estimated lighting directions 𝑙𝑒 can be computed as
follows:

𝑙𝑒 = argmin
𝑙𝑖

| |𝑅(𝐿(𝐹 (𝐼 , 𝑙𝑖 )), 𝑙𝑖 ) − 𝐼 | |, (5)

where 𝑙𝑖 represent a possible sampling, and 𝐿(·) is the linear com-
bination operation. The optimization process is visually shown in
Fig. 2 (bottom purple box). Taking the sampled real lighting di-
rections as network input, we can obtain the estimated SVBRDF,
and the rendering image can be computed. We minimize the error
between the rendering image and input image to guide finding the
optimal real lighting directions. Given that the rendering 𝑅(·) is
more sensitive to the accuracy of estimated lighting directions than
the network prediction 𝐹 (·), we can speed up the optimization as
follows:

𝑙
(𝑘+1)
𝑖

= argmin
𝑙 𝑗

| |𝑅(𝐿(𝐹 (𝐼 , 𝑙 (𝑘 )
𝑖

)), 𝑙 𝑗 ) − 𝐼 | |, (6)

where 𝑙 (𝑘 )
𝑖

represents the k-th 𝑙𝑖 of Eq. 5. Given that this equation
calculation does not involve the network forward pass, under GPU
parallel computing, the taking time ismuch shorter than performing
a network forward pass.

3.2.4 Basis Refinement. Inspired by Gao et al. [2019], we adopt
a similar strategy to refine the estimated SVBRDF by minimizing
the difference between the input and rendered image. Benefiting
from the prediction of basis materials and weights, we can keep the
weights fixed and optimize solely global bases.

argmin
{𝑏𝑔

𝑖
}

| |𝑅(𝐿({𝑏𝑔
𝑖
+ 𝑏𝑙𝑖 }, {𝑤𝑖 }), 𝑙) − 𝐼 | |. (7)

The predicted weights possess a well-defined spatial structure.
Therefore, optimizing global bases with fewer degrees of freedom

effectively prevents local overfitting during single-image optimiza-
tion. Meanwhile, optimizing global bases enables the utilization of
high errors in local regions to refine the global material reflectance.
For additional details, please refer to the supplementary materials.

4 IMPLEMENTATION
This section discusses the critical implementation details, including
the network architecture, loss function, training details, and testing
process. The source code and pre-trained model will be released.

4.1 Network Architecture
As shown in Fig. 2 (top blue box), the network of our DeepBasis
consists of weight and basis module. For the weight module, we
directly use the architecture proposed by Deschaintre et al. [2018]
and modify the input and output. The input has 9 channels, in-
cluding a 3-channel input image, a 3-channel logarithmic image
flattening the dynamic range [0, 1] of the input image, and a 3-
channel lighting-mark image. The lighting-mark image is obtained
by rendering a fixed SVBRDF using sampled lighting directions.
Compared with directly taking directions as input, the rendering
makes them unified with other inputs in the image domain. The
output is an N-channel weight image and its resolution is the same
as the input image.

Given the strong correlation between basis materials and the
blending weights, our designed basis and weight modules share the
same encoder (E). The basis module comprises two decoding units:
a global unit (G) and a local unit (L). The global unit is a multi-layer
perceptron (MLP) with 5 layers. Its output is a 𝑁 × 10 feature map
to represent N global basis materials (3-channel normal, 3-channel
diffuse, 1-channel roughness, and 3-channel specular) and is tiled to
the resolution 𝑁×𝑊×𝐻 × 10 same as their weights. The local unit
estimates the per-pixel basis materials. From the perspective of the
resolution, the process from the global basis to the local per-pixel
basis can be regarded as a super-resolution (SR) problem. Thus, we
directly use a simple but efficient NAFNet architecture proposed
by Chu et al. [2022] and Chen et al. [2022] and modify the input
and output. Its inputs contain two parts. The first part is 9-channel
original inputs, providing the complete information. The second
part is the collection of extracted features, paying more attention
to the missing features. It includes predicted global basis materials,
blending weights, and the error map between the rendering and
input image. The output is also a 𝑁×𝑊×𝐻 × 10 feature map. In our
implementation, N is equal to 10, and the effect of the number is
evaluated in ablation studies.

4.2 Loss function
Our training loss function has two terms:

L = 𝜆𝑠𝑢𝑝L𝑠𝑢𝑝 + 𝜆𝑣𝑐L𝑣𝑐 . (8)

The supervised loss L𝑠𝑢𝑝 with l1-norm minimizes the error be-
tween estimated SVBRDF and ground truth. L𝑣𝑐 is the variation-
consistency loss, as discussed in Section 3.2.2, and 𝜉 are sampled on
uniform distributions with range [0, 𝜋/6] for normal vectors and
[0, 0.3] for other parameters. These two loss terms are weighted by
𝜆𝑠𝑢𝑝 and 𝜆𝑣𝑐 . For our implementation, 𝜆𝑠𝑢𝑝 = 1 and 𝜆𝑣𝑐 = 0.05.
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4.3 Training Details
We implemented DeepBasis in PyTorch [Paszke et al. 2019] and
trained it with the Adam optimizer [Kingma and Ba 2014] for 400K
iterations. The initial learning rate was 2 × 10−5 and was gradually
reduced to 1×10−7 using the cosine annealing schedule [Loshchilov
and Hutter 2016]. The training data were from a public SVBRDF
dataset presented by Deschaintre et al. [2018]. The input directions
were sampled on a 2-D normal distribution whose mean is the
zero offset and whose standard deviation is equal to a third of the
maximum offset. In our implementation, the maximum offset angle
is 16.33◦. The training takes approximately 12 hours on a single
NVIDIA GeForce RTX 4090 graphics card.

4.4 Testing Process
When real lighting directions are pre-known, DeepBasis can di-
rectly predict the final results through a network forward pass.
For the more common unknown case, DeepBasis first predicts the
initial results using ideal lighting directions and then uses the iter-
ative optimization mentioned in Section 3.2.3 to find the optimal
estimation and obtain the final prediction results. Benefiting from
the acceleration of Eq. 6, it usually takes only a three-times network
forward pass to get the final 𝑙𝑒 . In our tests, the whole process usu-
ally completes within 1 second. When incorporating 500-iterations
basis refinement in our implementation, the overall time required
for the process can still be maintained within 3 seconds.

5 EXPERIMENTS
In order to evaluate our method, we performed the numerical eval-
uation and visual analysis on synthetic scenes and real-world cap-
tured images and compared the results against the state-of-the-art
methods. Moreover, we performed ablation studies to analyze dif-
ferent components’ effects on our method.

5.1 Comparison Experiments
We compared our method against the state-of-the-art single-image
SVBRDF estimation methods, including RADN [Deschaintre et al.
2018], Hybrid [Zhou and Kalantari 2021] and Look-Ahead [Zhou
and Kalantari 2022]. Additionally, we also compared results with
the optimization-based methods DIR [Gao et al. 2019] and MGan
[Guo et al. 2020]. We obtained their estimation results using the
source code and pre-trained models provided by the authors. Note
that for DIR, MaterialGan, and Look-Ahead, we provided the known
lighting directions as additional inputs.

5.1.1 Comparison on Synthetic Data. We first performed a numer-
ical comparison on a set of 122 synthetic scenes gathered from
Deschaintre et al. [2018; 2019], and the results are shown in the up-
per part of Table 1. Note that these test scenes were never involved
in the training. We evaluated the estimated quality of reflectance
parameters using Root Mean Square Error (RMSE) and evaluated
the re-rendering images using both RMSE and learned perceptual
image path similarity (LPIPS) [Zhang et al. 2018]. We performed
the re-renderings on 30 random lighting and viewing directions.
Our DeepBasis outperformed other methods in estimated mate-
rial maps and re-rendering quality, as indicated by the RMSE and
LPIPS metrics. Furthermore, using basis refinement (Ours+BF) can

Table 1: Numerical comparison on 122 synthetic scenes. We
evaluate the quality of estimated normal, diffuse, roughness,
and specular (N, D, R, S) in terms of RMSE. The re-renderings
(Ren.) for each SVBRDF are performed on 30 random light-
ing directions and evaluated by both RMSE and LPIPS. The
lowest errors are highlighted in bold. The upper part is the
comparison with the prior methods, and the lower part is
the results of ablation studies.

RMSE LPIPS
Methods N D R S Ren. Ren.
RADN 0.067 0.044 0.292 0.075 0.091 0.327
DIR 0.073 0.036 0.252 0.067 0.077 0.178
MGan 0.081 0.043 0.210 0.072 0.087 0.263
Hybrid 0.074 0.033 0.167 0.073 0.095 0.199

lookahead 0.065 0.051 0.202 0.083 0.092 0.233
Ours 0.053 0.031 0.162 0.043 0.076 0.170

Ours+Opt. 0.053 0.30 0.161 0.043 0.071 0.134
w/o L𝑣𝑐 0.053 0.035 0.188 0.065 0.082 0.234
w/o local 0.076 0.033 0.137 0.045 0.078 0.350
w/o global 0.051 0.036 0.159 0.060 0.084 0.252
w/o bases 0.053 0.037 0.202 0.063 0.085 0.245
baseline 0.052 0.030 0.162 0.043 0.062 0.153

make the estimated materials produce higher-quality re-rendering
appearances.

Next, we performed a visual comparison and presented two rep-
resentative synthetic scenes challenging for single-image SVBRDF
estimation in Fig. 6. More scenes are available in the supplemen-
tary material. We found that RADN fails to reconstruct specular
details, while the results of DIR and MGan suffer from artifacts
due to single-image overfitting. For Hybrid, the input lighting is
baked into reflectance maps (especially diffuse map), resulting in
plausible re-rendering results for the scene dominated by diffuse
reflectance but obvious artifacts in the decoupled reflectance maps.
In Look-Ahead’s results, the lack of normal details impedes the
re-rendering quality. In contrast, our results can better decouple
reflectance maps while having high-quality re-rendering results.
Therefore, both the numerical and visual comparisons prove that
our estimated SVBRDF is closer to the ground truth (GT) than other
methods.

5.1.2 Comparison on Real Data. To evaluate our method, we col-
lected 58 real scenes and captured 9 images with calibrated lighting
for each scene, similar to Guo et al. [2020]. Among the captured
images, one serves as the input, while the remaining images are
utilized as references to evaluate the re-rendering quality of the esti-
mated SVBRDF. Moreover, we conducted evaluations on real-world
datasets of MGan and Look-Ahead. The numerical comparison re-
sults are presented in the Table. 2, demonstrating that our method
is capable of generating re-rendering results that are closer to the
references. In Fig. 7, we show two real scenes for the visual compar-
ison, and more results are available in the supplementary material.
The first scene is a metal surface with protrusions. For the methods
RADN, DIR, MGan and Hybrid, the lighting information is incor-
rectly baked in the diffuse map. Although Look-Ahead can remove
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Table 2: Numerical comparison on real scenes. These scenes
are collected fromMGan [Guo et al. 2020], Look-Ahead [Zhou
and Kalantari 2022], and our real-world capturing. We calcu-
late the difference between the re-rendered and the reference
images by RMSE and LPIPS.

MGan Look-Ahead Ours
Methods RMSE LPIPS RMSE LPIPS RMSE LPIPS
RADN 0.126 0.367 0.118 0.359 0.172 0.307
DIR 0.148 0.344 0.108 0.300 0.150 0.245
MGan 0.149 0.385 0.121 0.350 0.142 0.403
Hybrid 0.150 0.323 0.141 0.289 0.157 0.262

Look-Ahead 0.117 0.289 0.095 0.230 0.152 0.239
Ours 0.111 0.263 0.084 0.218 0.132 0.231

Ours+Opt. 0.109 0.254 0.083 0.204 0.130 0.215

the lighting effect on reflectance maps, its estimated normal and
roughness maps lack the necessary details to reconstruct the spec-
ular reflectance, as indicated by the red box. The second scene is a
greeting card adorned with sequins, and these sequins are partly lit
in the input image, as shown in the red box. The previous methods
fall short in recovering the correct roughness or specular maps for
these sequins, thus the re-rendered images lack the corresponding
highlight details. Benefiting from the utilization of basis materials,
our method effectively leverages material spatial correlations to
reduce the ambiguity in the overall reflectance map decomposition.
Therefore, in the first scene, our estimation exhibits richer normal
details, while in the second scene, we can infer a more complete
specular map from partially activated highlight information on the
sequins.

5.2 Ablation Studies
We conducted ablation studies performed on 122 synthetic scenes
to analyze the effects of different components. To solely focus on
evaluating the individual effect of different components, the known
lighting directions were provided during the testing phrase.

5.2.1 The Effect of Basis Number. To evaluate the effect of basis
number on the two-level basis material model, we respectively
trained DeepBasis with different basis numbers and compared the
estimated results, as shown in Fig 8. We observed that excluding
the special case when the basis number is equal to one, the quality
of results has no obvious increasing or decreasing trend as the basis
number increases. It demonstrates that our two-level model does
not require a specific basis number selection to achieve sufficient
representational capability. With a lower basis number, the local
bases automatically play a more significant role in compensating
for the limited expressive ability of the global bases, and vice versa.
Consequently, the flexibility in expressive capability that was orig-
inally achieved by changing the basis number is replaced by the
proportional variation of local bases in the two-level model. There-
fore, besides 1, any other basis number is viable, and we used 10 in
our implementation.

5.2.2 The Effect of Two-level Basis Material Model. We conducted
experiments using only local bases and only global bases to analyze
their individual effects on the two-level model. Additionally, to

Figure 4: Lighting estimation evaluation. In order to visually
represent the angular error, we rendered a synthetic low-
roughness material under a point light source. The deviation
from the rendered position of a central point light source was
used to illustrate the error angle. The left section of the image
serves as a visual reference, depicting 0◦ and 16.33◦ angles,
while the right section shows the actual representation of
estimation errors.

evaluate the overall impact of bases, we removed all bases while
maintaining the proposed two-level structure for per-pixel SVBRDF
estimation. The numerical evaluation results are presented in Table.
1, and visual results are displayed in Fig. 10.

When comparing results without local bases, although the ex-
plicit spatial constraintmitigates the adverse effects of over-exposure,
it lacks the flexibility to represent fine details. Conversely, without
global bases, there is an increase in detail expression; however, it is
accompanied by over-exposure-induced weight irregularities and
subsequently affects the estimated SVBRDF. However, compared
to the results without any bases, the presence of artifacts is still re-
duced, indicating that per-pixel basis materials still better leverage
implicit spatial correlations. These experiments validated that our
proposed two-level model (baseline) is reasonable and necessary for
the utilization of explicit material correlations and the expression
of fine details.

5.2.3 The Effect of Variation-consistency Loss. To evaluate the im-
pact of the variation-consistency loss, we conducted an experiment
without it. The results, as shown in Table. 1, indicate degradation
in the estimated reflectance maps and re-rendering results. In the
context of basis materials, the key avoiding artifacts lies in whether
the weights can effectively represent spatial structures. In Fig. 10,
we observed partial aliasing in the predictions of basis and weights,
leading to the disrupted structures of weights around the central
highlight region, consequently affecting the prediction results.

5.2.4 The Effect of Lighting Direction Estimation. To evaluate the
accuracy of the estimation, we conducted testing on 10 randomly
rendered images per scene under varying lighting directions. The
mean error of estimated angular values was calculated across a total
of 1220 inputs for evaluation. Considering the significant influence
of material roughness on the highlight regions of the images, we
categorized the synthetic scenes into low, medium, and high rough-
ness groups. This categorization allowed us to analyze the impact
of different roughness levels on lighting estimation, as shown in Fig.
4. Additionally, since the primary objective of lighting estimation
is to serve for SVBRDF recovery, we examined the robustness of
our method to variations in input lighting directions that deviate
from being perpendicular to the sample surface. The evaluation
results are presented in Fig. 5. Based on the two experiments, it is



SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Li Wang, Lianghao Zhang, Fangzhou Gao, and Jiawan Zhang

Figure 5: We evaluate the robustness of our method to the
input lighting directions using RMSE metrics.

evident that our method accurately estimates the lighting, ensur-
ing stable SVBRDF estimation within the allowed deviation angle
(16.33◦ in our implementation). Furthermore, although materials
with high roughness do impact the accuracy of lighting estimation,
their SVBRDF estimation exhibits lower sensitivity to variations in
input lighting, making the effect negligible.

6 LIMITATIONS AND FUTUREWORK
Single-image SVBRDF estimation is an extremely challenging prob-
lem. Although our DeepBasis integrates explicit material spatial
correlations into the learned material data priors, further reducing
the ambiguity from single-image estimation, we observed that these
data priors may still not handle some unconventional materials.
Figure 9 offers such an example, where the material sample is a
plastic packaging surface with printed 3D patterns. In this case, the
printed lighting and shadow patterns might be mistakenly inter-
preted as reflectance details. In future work, to address this issue,
more input images or some strong priors should be provided. For
example, if the input sample surface is assumed to be planar with
no normal variation, the scene in Fig. 9 may be correctly estimated.

7 CONCLUSION
Wehave proposedDeepBasis to successfully integrate basis material
assumption into learned data priors for single-image SVBRDF esti-
mation. To do so, we proposed a two-level basis material model to
ensure the effective extraction of data priors by providing sufficient
representation even with a fixed number of bases. Additionally, we
adopted the joint prediction method such that the existing SVBRDF
dataset can serve for training, and we further designed a variation-
consistency loss to avoid the overlap between the feature extrac-
tions of bases and weights. Finally, under the hand-held capture
setting, we proposed an optimization-based method to estimate the
real lighting directions. Extensive experiments on synthetic scenes
and real-world captured images demonstrate that our method can
produce better results than state-of-the-art methods.

ACKNOWLEDGMENTS
This work was supported in part by National Key Research and
Development Program of China (2022YFF0904301).

REFERENCES
Miika Aittala, Timo Aila, and Jaakko Lehtinen. 2016. Reflectance Modeling by Neural

Texture Synthesis. ACM Trans. Graph. 35, 4, Article 65 (jul 2016), 13 pages. https:
//doi.org/10.1145/2897824.2925917

Miika Aittala, Tim Weyrich, and Jaakko Lehtinen. 2015. Two-Shot SVBRDF Capture
for Stationary Materials. ACM Trans. Graph. 34, 4, Article 110 (jul 2015), 13 pages.
https://doi.org/10.1145/2766967

Neil Alldrin, Todd Zickler, and David Kriegman. 2008. Photometric stereo with non-
parametric and spatially-varying reflectance. In 2008 IEEE Conference on Computer
Vision and Pattern Recognition. IEEE, 1–8.

Guojun Chen, Yue Dong, Pieter Peers, Jiawan Zhang, and Xin Tong. 2014. Reflectance
Scanning: Estimating Shading Frame and BRDF with Generalized Linear Light
Sources. ACM Trans. Graph. 33, 4, Article 117 (jul 2014), 11 pages. https://doi.org/
10.1145/2601097.2601180

Liangyu Chen, Xiaojie Chu, Xiangyu Zhang, and Jian Sun. 2022. Simple baselines for
image restoration. arXiv preprint arXiv:2204.04676 (2022).

Xiaojie Chu, Liangyu Chen, and Wenqing Yu. 2022. NAFSSR: Stereo Image Super-
Resolution Using NAFNet. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops. 1239–1248.

Robert L. Cook and Kenneth E. Torrance. 1981. A Reflectance Model for Computer
Graphics (SIGGRAPH ’81). Association for Computing Machinery, New York, NY,
USA, 307–316. https://doi.org/10.1145/800224.806819

Valentin Deschaintre, Miika Aittala, Fredo Durand, George Drettakis, and Adrien
Bousseau. 2018. Single-Image SVBRDF Capture with a Rendering-Aware Deep
Network. ACM Trans. Graph. 37, 4, Article 128 (jul 2018), 15 pages. https://doi.
org/10.1145/3197517.3201378

Valentin Deschaintre, Miika Aittala, Frédo Durand, George Drettakis, and Adrien
Bousseau. 2019. Flexible svbrdf capture with a multi-image deep network. In
Computer graphics forum, Vol. 38. Wiley Online Library, 1–13.

Valentin Deschaintre, George Drettakis, and Adrien Bousseau. 2020. Guided fine-
tuning for large-scale material transfer. In Computer Graphics Forum, Vol. 39. Wiley
Online Library, 91–105.

Yue Dong. 2019. Deep appearance modeling: A survey. Visual Informatics 3, 2 (2019),
59–68.

Yue Dong, Jiaping Wang, Xin Tong, John Snyder, Yanxiang Lan, Moshe Ben-Ezra, and
Baining Guo. 2010. Manifold Bootstrapping for SVBRDF Capture. ACM Trans.
Graph. 29, 4, Article 98 (jul 2010), 10 pages. https://doi.org/10.1145/1778765.1778835

Jiahui Fan, Beibei Wang, Milos Hasan, Jian Yang, and Ling-Qi Yan. 2023. Neural
Biplane Representation for BTF Rendering and Acquisition. In ACM SIGGRAPH
2023 Conference Proceedings. 1–11.

Duan Gao, Xiao Li, Yue Dong, Pieter Peers, Kun Xu, and Xin Tong. 2019. Deep Inverse
Rendering for High-Resolution SVBRDF Estimation from an Arbitrary Number of
Images. 38, 4, Article 134 (jul 2019), 15 pages. https://doi.org/10.1145/3306346.
3323042

Dan B Goldman, Brian Curless, Aaron Hertzmann, and Steven M. Seitz. 2010. Shape
and Spatially-Varying BRDFs from Photometric Stereo. IEEE Transactions on Pattern
Analysis and Machine Intelligence 32, 6 (2010), 1060–1071. https://doi.org/10.1109/
TPAMI.2009.102

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep learning. MIT press.
Darya Guarnera, Giuseppe Claudio Guarnera, Abhijeet Ghosh, Cornelia Denk, and

Mashhuda Glencross. 2016. BRDF representation and acquisition. In Computer
Graphics Forum, Vol. 35. Wiley Online Library, 625–650.

Jie Guo, Shuichang Lai, Chengzhi Tao, Yuelong Cai, Lei Wang, Yanwen Guo, and Ling-
Qi Yan. 2021. Highlight-Aware Two-Stream Network for Single-Image SVBRDF
Acquisition. ACM Trans. Graph. 40, 4, Article 123 (jul 2021), 14 pages. https:
//doi.org/10.1145/3450626.3459854

Yu Guo, Cameron Smith, Miloš Hašan, Kalyan Sunkavalli, and Shuang Zhao. 2020.
MaterialGAN: Reflectance Capture Using a Generative SVBRDFModel. 39, 6, Article
254 (nov 2020), 13 pages. https://doi.org/10.1145/3414685.3417779

Philipp Henzler, Valentin Deschaintre, Niloy J. Mitra, and Tobias Ritschel. 2021. Gener-
ative Modelling of BRDF Textures from Flash Images. 40, 6, Article 284 (dec 2021),
13 pages. https://doi.org/10.1145/3478513.3480507

Yong Hwi Kim and Kwan H Lee. 2022. Data Driven SVBRDF Estimation Using Deep
Embedded Clustering. Electronics 11, 19 (2022), 3239.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980 (2014).

Jason Lawrence, Aner Ben-Artzi, Christopher DeCoro, Wojciech Matusik, Hanspeter
Pfister, Ravi Ramamoorthi, and Szymon Rusinkiewicz. 2006. Inverse shade trees for
non-parametric material representation and editing. ACM Transactions on Graphics
(TOG) 25, 3 (2006), 735–745.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature 521,
7553 (2015), 436–444.

Hendrik P. A. Lensch, Jan Kautz, Michael Goesele, Wolfgang Heidrich, and Hans-Peter
Seidel. 2003. Image-Based Reconstruction of Spatial Appearance and Geometric
Detail. 22, 2 (apr 2003), 234–257. https://doi.org/10.1145/636886.636891

Xiao Li, Yue Dong, Pieter Peers, and Xin Tong. 2017. Modeling Surface Appearance
from a Single Photograph Using Self-Augmented Convolutional Neural Networks.

https://doi.org/10.1145/2897824.2925917
https://doi.org/10.1145/2897824.2925917
https://doi.org/10.1145/2766967
https://doi.org/10.1145/2601097.2601180
https://doi.org/10.1145/2601097.2601180
https://doi.org/10.1145/800224.806819
https://doi.org/10.1145/3197517.3201378
https://doi.org/10.1145/3197517.3201378
https://doi.org/10.1145/1778765.1778835
https://doi.org/10.1145/3306346.3323042
https://doi.org/10.1145/3306346.3323042
https://doi.org/10.1109/TPAMI.2009.102
https://doi.org/10.1109/TPAMI.2009.102
https://doi.org/10.1145/3450626.3459854
https://doi.org/10.1145/3450626.3459854
https://doi.org/10.1145/3414685.3417779
https://doi.org/10.1145/3478513.3480507
https://doi.org/10.1145/636886.636891


DeepBasis: Hand-Held Single-Image SVBRDF Capture via Two-Level Basis Material Model SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

ACM Trans. Graph. 36, 4, Article 45 (jul 2017), 11 pages. https://doi.org/10.1145/
3072959.3073641

Zhengqin Li, Kalyan Sunkavalli, and Manmohan Chandraker. 2018a. Materials for
Masses: SVBRDF Acquisition with a Single Mobile Phone Image. In Computer Vision
– ECCV 2018, Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair Weiss
(Eds.). Springer International Publishing, Cham, 74–90.

Zhengqin Li, Zexiang Xu, Ravi Ramamoorthi, Kalyan Sunkavalli, and Manmohan
Chandraker. 2018b. Learning to Reconstruct Shape and Spatially-Varying Re-
flectance from a Single Image. 37, 6, Article 269 (dec 2018), 11 pages. https:
//doi.org/10.1145/3272127.3275055

Ilya Loshchilov and Frank Hutter. 2016. Sgdr: Stochastic gradient descent with warm
restarts. arXiv preprint arXiv:1608.03983 (2016).

Rosalie Martin, Arthur Roullier, Romain Rouffet, Adrien Kaiser, and Tamy Boubekeur.
2022. MaterIA: Single Image High-Resolution Material Capture in the Wild. In
Computer Graphics Forum, Vol. 41. Wiley Online Library, 163–177.

Wojciech Matusik, Hanspeter Pfister, Matt Brand, and Leonard McMillan. 2003a. A
Data-Driven Reflectance Model. ACM Trans. Graph. 22, 3 (jul 2003), 759–769.
https://doi.org/10.1145/882262.882343

WojciechMatusik, Hanspeter Pfister, Matthew Brand, and LeonardMcMillan. 2003b. Ef-
ficient Isotropic BRDF Measurement (EGRW ’03). Eurographics Association, Goslar,
DEU, 241–247.

Giljoo Nam, Joo Ho Lee, Diego Gutierrez, and Min H Kim. 2018. Practical svbrdf
acquisition of 3d objects with unstructured flash photography. ACM Transactions
on Graphics (TOG) 37, 6 (2018), 1–12.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances in
neural information processing systems 32 (2019).

Peiran Ren, Jiaping Wang, John Snyder, Xin Tong, and Baining Guo. 2011. Pocket
Reflectometry. 30, 4, Article 45 (jul 2011), 10 pages. https://doi.org/10.1145/2010324.
1964940

Roland Ruiters, Christopher Schwartz, and Reinhard Klein. 2013. Example-based Inter-
polation and Synthesis of Bidirectional Texture Functions. In Computer Graphics
Forum, Vol. 32. Wiley Online Library, 361–370.

Giuseppe Vecchio, Simone Palazzo, and Concetto Spampinato. 2021. SurfaceNet:
Adversarial SVBRDF Estimation from a Single Image. In Proceedings of the IEEE/CVF
International Conference on Computer Vision. 12840–12848.

Bruce Walter, Stephen R. Marschner, Hongsong Li, and Kenneth E. Torrance. 2007.
Microfacet Models for Refraction through Rough Surfaces (EGSR’07). Eurographics
Association, Goslar, DEU, 195–206.

Chun-Po Wang, Noah Snavely, and Steve Marschner. 2011. Estimating Dual-Scale
Properties of Glossy Surfaces from Step-Edge Lighting (SA ’11). Association for
Computing Machinery, New York, NY, USA, Article 172, 12 pages. https://doi.org/
10.1145/2024156.2024206

Tao Wen, Beibei Wang, Lei Zhang, Jie Guo, and Nicolas Holzschuch. 2022. SVBRDF
Recovery from a Single Image with Highlights Using a Pre-trained Generative
Adversarial Network. In Computer Graphics Forum. Wiley Online Library.

Wenjie Ye, Yue Dong, Pieter Peers, and Baining Guo. 2021. Deep Reflectance Scanning:
Recovering Spatially-varying Material Appearance from a Flash-lit Video Sequence.
In Computer Graphics Forum, Vol. 40. Wiley Online Library, 409–427.

Wenjie Ye, Xiao Li, Yue Dong, Pieter Peers, and Xin Tong. 2018. Single image sur-
face appearance modeling with self-augmented cnns and inexact supervision. In
Computer Graphics Forum, Vol. 37. Wiley Online Library, 201–211.

Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, andOliverWang. 2018. The
Unreasonable Effectiveness of Deep Features as a Perceptual Metric. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Yezi Zhao, Beibei Wang, Yanning Xu, Zheng Zeng, Lu Wang, and Nicolas Holzschuch.
2020. Joint SVBRDF Recovery and Synthesis From a Single Image using an Unsu-
pervised Generative Adversarial Network.. In EGSR (DL). 53–66.

Xilong Zhou, Milos Hasan, Valentin Deschaintre, Paul Guerrero, Kalyan Sunkavalli, and
Nima Khademi Kalantari. 2022. Tilegen: Tileable, controllable material generation
and capture. In SIGGRAPH Asia 2022 Conference Papers. 1–9.

Xilong Zhou and Nima Khademi Kalantari. 2021. Adversarial Single-Image SVBRDF
Estimation with Hybrid Training. In Computer Graphics Forum, Vol. 40. Wiley
Online Library, 315–325.

Xilong Zhou and Nima Khademi Kalantari. 2022. Look-Ahead Training with Learned
Reflectance Loss for Single-Image SVBRDF Estimation. 41, 6, Article 266 (nov 2022),
12 pages. https://doi.org/10.1145/3550454.3555495

Zhiming Zhou, Guojun Chen, Yue Dong, David Wipf, Yong Yu, John Snyder, and Xin
Tong. 2016. Sparse-as-Possible SVBRDF Acquisition. 35, 6, Article 189 (dec 2016),
12 pages. https://doi.org/10.1145/2980179.2980247

https://doi.org/10.1145/3072959.3073641
https://doi.org/10.1145/3072959.3073641
https://doi.org/10.1145/3272127.3275055
https://doi.org/10.1145/3272127.3275055
https://doi.org/10.1145/882262.882343
https://doi.org/10.1145/2010324.1964940
https://doi.org/10.1145/2010324.1964940
https://doi.org/10.1145/2024156.2024206
https://doi.org/10.1145/2024156.2024206
https://doi.org/10.1145/3550454.3555495
https://doi.org/10.1145/2980179.2980247


SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Li Wang, Lianghao Zhang, Fangzhou Gao, and Jiawan Zhang

Figure 6: Comparison on Synthetic Data. We compare our results against RADN of Deschaintre et al. [2018], DIR of Gao et al.
[2019], MGan of Guo et al. [2020], Hybrid of Zhou et al. [2021] and Look-Ahead of Zhou et al. of [2022] on synthetic data. For
each scene, we evaluate the reflectance maps and the re-rendering images using the ground truth (GT).

Figure 7: Comparison on Real Data. All input images are captured by a hand-held mobile phone camera with a co-located
flashlight. Here, we compare our method against RADN of Deschaintre et al. [2018], DIR of Gao et al. [2019], MGan of Guo et al.
[2020], Hybrid of Zhou et al. [2021] and Look-Ahead of Zhou et al. of [2022]. Note that, the required lighting directions of DIR,
MGan and Look-Ahead are additionally provided by calibration using a checkerboard.
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Figure 8: The effect of basis number. The diagram shows
the RMSE of SVBRDF and RMSE/LPIPS of re-rendering
images under different basis number.

Figure 9: Failure cases. This sample is a plastic packaging
surface printed with 3D patterns. The patterns with the
lighting and shadows may interfere with the estimation
of SVBRDF. We also provide the results estimated by De-
schaintre et al. [2018], Zhou and Kalantari [2021; 2022].

Figure 10: The effect of without different components. In the right part, we show one of basis materials and its corresponding
weight to illustrate the direct effect on basis and weight prediction.
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