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Figure 1: Chinese character inpainting results by the proposed method. These examples are taken from different scene texts.
Although some characters are almost unrecognizable, our method can still infer and restore reasonable characters based on
contextual semantics.

ABSTRACT
Chinese character inpainting is a challenging task where large
missing regions have to be filled with both visually and semantic
realistic contents. Existing methods generally produce pseudo or
ambiguous characters due to lack of semantic information. Given
the key observation that Chinese characters contain visually glyph
representation and intrinsic contextual semantics, we tackle the
challenge of similar Chinese characters by modeling the underlying
regularities among glyph and semantic information. We propose a
semantics enhanced generative framework for Chinese character in-
painting, where a global semantic supervising module (GSSM) is in-
troduced to constrain contextual semantics. In particular, sentence
embedding is used to guide the encoding of continuous contextual
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characters. The method can not only generate realistic Chinese
character, but also explicitly utilize context as reference during
network training to eliminate ambiguity. The proposed method
is evaluated on both handwritten and printed Chinese characters
with various masks. The experiments show that the method suc-
cessfully predicts missing character information without any mask
input, and achieves significant sentence-level results benefiting
from global semantic supervising in a wide variety of scenes.
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1 INTRODUCTION
Chinese character, either handwritten or printed, is the basic unit of
representing text information for communication and collaboration.
The original carriers of Chinese characters are ancient documents or
stone inscriptions. However, some parts of the Chinese characters
may be damaged due to improper storage or aging factors. We aim
to fill the missing regions in Chinese character images with accurate
synthesized contents, and call this process as Chinese character
inpainting (see Figure 1). Restoring these characters contributes in
enhancing text documents visually and making them easier to be
recognized. Thus, it is potential to support a variety of text-related
tasks, such as text recognition and text classification. Meantime, it
is of great historical significance and cultural value.

Despite a lot of researches on natural image synthesis, there
are few studies on character inpainting, especially for ideograms
like Chinese characters. Unlike English characters, which consist
of 26 alphabets, the number of Chinese characters is quite large.
Moreover, each Chinese character is a kind of pictographic symbol
with a complex and unique structure, which makes the restora-
tion of Chinese character images more difficult. Existing image
inpainting techniques [7, 20, 22, 33] synthesize an image by filling
plausible contents in the missing regions. With the development of
deep learning, recent CNN-based works on image inpainting have
shown promising results, most of which follow the encoder-decoder
structure. These methods may obtain visually plausible character
structures, but often generate blurry non-existence Chinese charac-
ters (Figure 2(a)). In addition, masks indicating the missing regions
are usually required as input, which may ultimately limit the utility
of these methods in character inpainting.

Different from natural images, the basic unit of Chinese char-
acters is the stroke, which is composed of various exact lines that
has a specific shape called a glyph. As a result, some approaches
regard the character inpainting task as a deteriorated line drawing
restoration problem [25, 26]. These approaches attempt to complete
discontinuous stroke after automatic gap detection from a char-
acter. Due to the diversity and complexity of Chinese characters,
these approaches are effective when the stroke structure is clear and
unambiguous, but may fail to deal with complex structure with mul-
tiple lines and intersections, resulting in pseudo characters(Figure
2(b)). To synthesize more realistic results, some researches [4, 15]
employ generative adversarial networks (GAN) to restore certain
Chinese character. These methods do not take into account the
contextual semantics(Figure 2(c)), although some certain legal char-
acters can be generated, they do not conform to the actual context.
In addition, large missing regions are also challenging for such ap-
proaches because it is difficult to identify stroke structure without
the constraint of character glyph.

The glyph representation of Chinese characters encode rich in-
formation of their meanings. It is intuitive that the glyph represen-
tation and semantic information of a character should benefit from
each other in character-related computer vision or natural language
processing tasks. More recently, there have been some efforts apply-
ing visual glyph feature to language understanding tasks, including
text classification [13, 35], word analogy and word similarity [29].
These works verify the correlation between glyph information and
semantic information of character images. Moreover, some works

Input
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Figure 2: Illustration of Chinese character inpainting cases
with (a) blurry characters, (b) pseudo characters, (c) ambigu-
ous characters, (d) correct characters.

attempt to introduce text features into some computer vision tasks
from the perspective of embedding [14, 21, 23, 24]. These methods
prove that embedded semantic information is helpful to the text
related computer vision tasks, but they deal with English characters
and can only restore a single word.

In this paper, we propose a contextual semantics enhanced gen-
erative framework for Chinese character inpainting. Our method
can automatically recognize the missing regions in a character or
short text image, and adaptively restore the missing stroke of each
character. First, we design an inpainting model that consists of an
encoding-decoding generator and a discriminator to synthesize the
missing contents. Second, we introduce a sub-network structure
named global semantic supervising module (GSSM) to restrict glyph
representation. The key idea is to jointly conduct character visual
feature and contextual semantic information in the inpainting pro-
cess. Sentence embedding from NLP is regarded as a contextual
reference to guide the encoding features. Specifically, we obtain
the sentence embedding from a pre-trained language model and
the semantic information from GSSM respectively, then compute a
loss between them during training. More concretely, all characters
in a sentence are intercepted to form a batch of images as input.
These character images are considered as a whole in the processing
of GSSM, but they do not affect each other in the generator and
discriminator. The semantic module can predict the semantic infor-
mation of a set of character images that represent a sentence(Figure
2(d)).

In summary, the main contributions are as follows:

• We offer a new perspective into Chinese character inpainting
with contextual semantics. The combination of image and
text provides richer semantics, allowing the model to infer
accurate Chinese characters.

• We propose a network with global semantic supervising
module (GSSM), which takes sentence embedding from NLP
as contextual constraints to optimize the glyph features of
each Chinese character.
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• We contribute a new handwritten and printed image dataset
with semantic labels for Chinese character image inpainting,
in the hope that it will kick-start research effort on solving
this challenging problem.

2 RELATEDWORK
Image inpainting approaches can be roughly divided into two cate-
gories: traditional methods based on diffusion or patch matching,
and recent methods based on deep learning. Diffusion-based meth-
ods [1, 3], which are restricted to locally available information,
propagate neighboring information into the missing regions. Patch-
Match [2] is a typical patch based method which finds similar blocks
on the original image and fill them in the inpainting position. These
methods are feasible for repairing local distortions such as texture
damage, but they are insufficient to deal with some global informa-
tion distortions. Recently, many image inpainting tasks based on
the deep learning apply the visual and semantic information from
the undamaged regions of the original image to infer the filling
content, where the contextual features [20], content features [33]
and GAN features [22] are formulated to optimize the results.

Character inpainting is more inclined to restore local lines from
the perspective of visual features. The methods in [25] and [18]
work well for phonogram but are not suitable for ideogram with
with complex structure such as Chinese characters. Subsequently,
some approaches attempt to introduce the glyph features. Chang
et al. [4] propose a hierarchical learning network named HAN to
extract hierarchical features to reconstruct the damaged strokes of
printed Chinese character. Li et al. [15] pose a generative adversarial
network combining with contextual loss to improve the inpainting
effect of handwritten Chinese character. However, the above meth-
ods often generate some pseudo-Chinese characters composed of
strokes that seem reasonable but do not actually exist. Due to the
lack of interaction between adjacent characters in the text image,
these methods are likely to produce ambiguous characters.

It is obvious that only relying on scattered glyph information can-
not guarantee to infer the correct character. Intuitively, the glyph
representation and semantic information of a character should com-
plement each other. In recent years, the interaction of visual and
semantic information has shown great progress in multi-modal
tasks such as machine translation, image annotation, and cross-
modal retrieval. On the one hand, existing research has introduced
glyph information into text classification, and has achieved good re-
sults by converting high-dimensional character glyph information
into low-dimensional vectors as glyph embedding.

Among these, Wilkinson et al. [32] try to embed image features
into a word embedding space for text spotting. Zhang et al. [35] uti-
lize Chinese character representations for text classification. Su et
al. [29] find that the glyph embedding improves both word analogy
and word similarity results. The CE-CLCNN [13] applies damaged
character image to classify text. The Glyce method [17] combines
glyph embeddings with BERT embeddings [9] for a variety of Chi-
nese NLP tasks. As mentioned before, the state-of-the-art methods
using glyph embedding emphasize the glyph structure to enhance
semantic information. However, these related studies do not show
the effect of semantic information on the improvement of glyph
structure.

On the other hand, text features also play an important role in
computer vision tasks from the perspective of embedding. STE-
FANN [24] is designed to modify the text content in an image at
character-level, which uses label embedding to represent and edit
each character. Some cross-modality tasks [14, 23] try to learn fea-
ture embedding from word images and text labels for word spotting
and recognition tasks. Recently, the idea of SEED [21] is to use
word embedding from a pre-trained language model to make up
for the lack of contextual semantic information. In SNR [34], global
semantic reasoning module is introduced to capture global semantic
context for accurate scene text recognition. These studies show that
semantic modules that process contextual semantic information
can be applied in image processing tasks.

3 APPROACH
In this section, we describe the proposed framework for Chinese
character inpainting. Our goal is to synthesize the missing contents
that are both visually realistic and semantically consistent with the
whole text. Figure 3 shows the proposed framework that consists
of a generator, a discriminator, GSSM and a pre-trained language
module. The generator is used to extract visual features and syn-
thesize the missing contents. The discriminator can improve the
quality of synthesized results, especially for the stroke details. The
GSSM can capture sentence semantic features, which guides the
generator to synthesize contextually coherent characters. The pre-
trained language module serves as a constraint on the information
predicted by the semantic module.

3.1 Generator
The generator G follows the architecture in HAN network [4],
which is designed as an encoder(𝐺𝑒𝑛)-decoder(𝐺𝑑𝑒 ) structure. Skip
connections between mirrored layers in the encoder and decoder
stacks have been added to the generator. It is worth mentioning that
the skip connection can restore more details. In order to retain more
spatial support to generate the masked regions, we use convolution
with 2×2 pixel strides and convolutional kernel for down-sampling
rather than pooling operation. Additionally, the framework with
more convolutional layers has better performance to restore line
drawings so that more uniform-sized convolutional layers are added
to extract enough local features. Instead of a relu activation used in
the output layer in HAN, we use a sigmoid activation to map it to
(0,1) in the output.

Let 𝑥 , x, n be input images, ground truth images, and batch size,
respectively. The input of the encoder is represented as {𝑥1, 𝑥2, ..., 𝑥𝑛}
and the output of the encoder is a batch of feature sequences f :

𝑓 = 𝐺𝑒𝑛 (𝑥) (1)

corresponding to {𝑓1, 𝑓2, ..., 𝑓𝑛}. Feature sequences f have two func-
tions, one is to predict the semantic information by GSSM and the
other is as the input of the decoder to predict the character image
𝑥𝑝𝑟𝑒𝑑 for the masked region

𝑥𝑝𝑟𝑒𝑑 = 𝐺𝑑𝑒 (𝑓 ) . (2)

The generator aims to synthesize characters similar to the speci-
fied ground-truth ones. L1- or L2-norm are often used to measure
the pixel distance between paired images. Considering the impact
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Figure 3: Framework Overview. It consists of a generator, a discriminator, a global semantic supervising module (GSSM) and
a pre-trained language module. The generator is based on encoder-decoder. The encoder follows the Conv-BatchNorm [12] -
ELU [6] architecture. The decoder follows theConv-BatchNorm-ReLU except for the last layer, which uses a sigmoid activation
function to keep the output in [0,1] range. A batch of incomplete images are fed to the encoder to generate featuremaps f, which
are inputs to the decoder and GSSM respectively. Predicted images from the decoder are fed to the discriminator following
Conv-SpectralNorm [19]-LeakyReLU architecture.

of multiple typefaces, we further introduce a per-pixel reconstruc-
tion loss L𝑟𝑒𝑐 to the generator, which is the L1 distance between
the network output and the ground-truth image. The L𝑟𝑒𝑐 loss is
necessary to evaluate details and structure differences

L𝑟𝑒𝑐 (𝐺) = ∥𝜙 (𝑥) − 𝜙 (𝑥𝑝𝑟𝑒𝑑 )∥1, (3)

where 𝜙 is the pre-trained 16-layer VGG network [28]. Further-
more, a content loss L𝑐𝑜𝑛 is used to represent the difference of the
predicted regions with respect to the ground-truth. It is defined by

L𝑐𝑜𝑛 (𝐺) = ∥𝑥 ⊙ 𝑥𝑝𝑟𝑒𝑑 ∥22, (4)

here ⊙ is the pixel-wise multiplication and ∥·∥2 is the Euclidean
norm. Therefore, the generative loss can be defined as

L𝐺 = L𝑐𝑜𝑛 + 𝜆1L𝑟𝑒𝑐 . (5)

3.2 Discriminator
Although the generator network can capture missing information,
it does not ensure that the filled region is visually realistic and
coherent. To encourage more realistic results, we adopt a discrimi-
nator D that serves as a binary classifier to distinguish between real
and fake images. The goal of this discriminator is to help improve
the quality of synthesized results such that the trained discrimi-
nator is fooled by unrealistic images. Our discriminator structure
is similar to DCGAN [22], using Leakly ReLU activation function
with slope 0.2 after each convolution layer. Spectral normalization
[19] is applied to stabilize training. We use a sigmoid activation to

map the result to [0,1] in the output, in which 0 means fake and 1
means real.

We use 𝑥𝑝𝑟𝑒𝑑 and x as input that predicts whether or not a
character image is real. The objective of a GAN can be formulated
as

L𝑎𝑑𝑣 (𝐺,𝐷) = E(𝑥) log(𝐷 (𝑥)) + E(𝑥𝑝𝑟𝑒𝑑 ) log(1 − 𝐷 (𝑥𝑝𝑟𝑒𝑑 )), (6)

where the generator G is trained to minimize this objective against
the adversarial D that tries to maximize it.

3.3 Global Semantic Supervising Module
In this subsection, we first address howwe integrate global semantic
supervising module (GSSM) into our unified inpainting network,
and then discuss details of the contextual module.

Each of feature sequences {𝑓1, 𝑓2, ..., 𝑓𝑛} is flattened into h dimen-
sional glyph vectors {𝑔1, 𝑔2, ..., 𝑔𝑛} that are similar to pre-trained
word vectors as embedding layers. These visual-to-semantic infor-
mation contains the visual features of continuous n characters with
semantic coherence. Let g be all glyph vectors applying concatena-
tion operator ⊕

𝑔 = 𝑔1 ⊕ 𝑔2 ⊕ ... ⊕ 𝑔𝑛 (7)

with the shape of 𝑛×ℎ, which are input to GSSM to predict a feature
vector. We uses filter wk with the kernel size of k and 256 channels
to obtain multiple features by one-dimensional convolution. It’s
represented as

𝑣 (𝑘) = 𝑝𝑛−𝑘+1 (𝜎 (𝑤𝑘𝑔 + 𝑏)). (8)
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images cover handwritten and printed characters with regular or irregular masks. In addition to the correctness of strokes or
radicals, our method avoids generating ambiguous characters with high visual credibility. Even if the characters are almost
completely damaged, our network can still infer the correct characters based on the contextual semantics.

Here 𝜎 is a ReLU activation function, b is a bias term and p is max-
pooling operation with the kernel size of 𝑛 − 𝑘 + 1. Each of feature
vectors v(k) is concatenated to form a new feature vector v

𝑣 = 𝑣 (2) ⊕ 𝑣 (3) ⊕ 𝑣 (4), (9)

where ⊕ denotes the concatenation operator. We then apply two
linear functions that randomly dropouts [10] arbitrary elements to
prevent overfitting, and the semantic information y is predicted as
following:

𝑦 = 𝑤2𝜎 (𝑤1𝑣 + 𝑏1) + 𝑏2 . (10)

Here w1,w2, b1, b2 are weights. ReLU activation function and Batch
Normalization are used for convolutional layers. Dropout rate of
linear functions is set to 0.5.

The GSSM is also supervised by a kind of loss, called the seman-
tic loss. The semantic loss is used to optimize the completion of
contextual components. It mainly considers how to use appropriate
text representation methods with semantics to compute semantic
similarity. It is defined as follows:

L𝑠𝑒𝑚 = 1 − cos (𝑦, 𝑒) (11)

where L𝑠𝑒𝑚 is the cosine embedding loss between the predicted
semantic information y and the sentence embedding e generated
by our pre-trained language module.

3.4 Pre-trained Language Module
To supervise the predicted semantic information, we choose BERT
model as our pre-trained language module, which is based on 12
transformer layer structure [31]. The embedding vector is then pro-
duced by averaging from the hidden layers of each token from the
second layer to the last layer. The module is designed to pre-train
deep bidirectional representations from unlabeled text by jointly
conditioning on both left and right context in all layers. As a re-
sult, the pre-trained BERT model can be finetuned with just one
additional output layer to create state-of-the-art models for a wide
range of tasks. In our approach, a sentence 𝐸 = {𝑐1, 𝑐2, ..., 𝑐𝑛} is
encoded by the Chinese pre-trained BERT to get sentence embed-
ding e, where each character 𝑐𝑖 corresponds to the content of each
character image 𝑥𝑖 .

We train the framework with a special designed hybrid loss
L, which is the combination of generative loss L𝐺 , adversarial
loss L𝑎𝑑𝑣 and semantic loss L𝑠𝑒𝑚 . As shown in Figure 3, they
correspond to the generator, discriminator and GSSM respectively.
The overall loss function is defined as follow:

𝑚𝑖𝑛
𝐺

𝑚𝑎𝑥
𝐷

L =𝑚𝑖𝑛
𝐺

(
L𝑐𝑜𝑛 + 𝜆1L𝑟𝑒𝑐 + 𝜆2𝑚𝑎𝑥

𝐷
(L𝑎𝑑𝑣) + 𝜆3L𝑠𝑒𝑚

)
(12)

where 𝜆1, 𝜆2 and 𝜆3 are hyperparameters that balance the contri-
bution of different losses.
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Table 1: Comparison of different methods in terms of PSNR, SSIM, OCR confidence and accuracy. The values in bold indicate
the best performance.

Dataset Methods PSNR SSIM CRNN-Confidence CRNN-OCR DenseNet-Confidence DenseNet-OCR

Printed

EBII 13.193752 0.715668 0.221428 0.105678 0.285756 0.146688
HCCGAN 20.218434 0.863805 0.679080 0.717391 0.748061 0.836232
LDFCN 24.448020 0.893142 0.715833 0.779710 0.809689 0.871159
HAN 24.078704 0.902420 0.713677 0.784058 0.821934 0.892754
Ours 27.188082 0.898676 0.725509 0.800000 0.824841 0.901449

Ground Truth - - 0.728168 0.804348 0.827814 0.905797

Handwritten

EBII 5.348093 0.077376 0.178904 0.173594 0.168758 0.136952
HCCGAN 18.816881 0.818332 0.513416 0.630284 0.568365 0.621988
LDFCN 25.847255 0.931537 0.663934 0.791689 0.709689 0.787474
HAN 26.777639 0.943565 0.766867 0.842694 0.781934 0.837791
Ours 26.698042 0.942825 0.797347 0.881394 0.804841 0.850243

Ground Truth - - 0.817668 0.901798 0.835935 0.884479

4 EXPERIMENTAL RESULTS
4.1 Datasets
To train the whole network, a dataset that contains Chinese char-
acter images with text label is required, but this kind of dataset is
not common. There is no even public data set available for Chinese
characters inpainting. To this end, we enrich CASIA-HWDB1.11,
a widely used handwritten Chinese character dataset, with various
masks. We also create a new printed dataset, based on synthetically
generated printed Chinese character images. Both are associated
with the text label. The datasets can be found in the page2.

Label for Chinese Character Images (LCCI): As mentioned
earlier, Chinese character inpainting should be targeted at a mean-
ingful text rather than a single Chinese character. And the proposed
method is an end-to-end learning model, that is, the input of the
generator are a group of continuous damaged character images
from a sentence, and the output are a set of completed character
images. So the key problem is how to find the corresponding label
for each Chinese character in a text image. THUCTC dataset [30]
is widely used for the NLP tasks such as text classification. We take
about 50,000 text data from THUCTC. After pre-processing, a text
dataset LCCI consisting of 100,000 sentences with 634 Chinese
characters is obtained. The number of characters in each sentence
is kept in the range (7, 32). Inspired by word embedding, we use
a pre-trained language model named Chinese BERT-WWM [8] to
perform a "sentence embedding" process to generate some sen-
tence vectors. The size of each vector is set to 768 by default. These
selected labels are used to associate images in reverse.

Handwritten Chinese Character Data (HCCD):
CASIA-HWDB1.1 contains 1,172,907 handwritten Chinese char-
acter images and each category is written by 300 people. For dataset
HCCD, 190,220 images are picked from CASIA-HWDB1.1 corre-
sponding to 634 Chinese characters in dataset LCCI, each of which
contain 300 pairs of grayscale images. These images are normalized
to 64 × 64 size. For each pair, one with the mask is the input image
and the other is the target image. We use two types of image masks:
regular and irregular. Regular masks that are rectangular account

1http://www.nlpr.ia.ac.cn/databases/handwriting/Home.html
2https://github.com/WANGJH9953/CCID2021

for 25% of total image pixels. Irregular masks [16] cover the central
regions of characters. We then split the dataset HCCD into the
training set, validation set and testing set with 6:2:2 ratio.

Printed Chinese Character Data (PCCD). Motivated by the
CE-CLCNN method [13], we similarly design a printed Chinese
character image dataset PCCD. Each of 634 Chinese characters
from dataset LCCI is associated with 1000 pairs of grayscale images,
and we use the same method as the handwritten dataset HCCD to
perform data pre-processing. Moreover, 36 types of printed fonts
are used to increase the generalization ability of the network.

Examples of different masks are shown in Figure 5. Compared
with the common image inpainting method, our method does not
need to take masks indicating the missing regions as the input.

Figure 5: Examples of random masks

4.2 Implementation Details
To alleviate the long-tailed data distribution problem, we apply
two strategies consisting of content training and semantic context
training. For content training, we only train the generator and
discriminator, and randomly select image pairs from the dataset
HCCD/PCCD as training data, where batch size n, 𝜆1, 𝜆2 and 𝜆3
are set to 32, 0.5, 0.001, 0 respectively. The role of content training
is to ensure that all kinds of characters in dataset are fully trained.

For semantic context training, sentence labels in LCCI are used
as indexes to find the corresponding character images in HCCD/
PCCD. These images are used as training batch, to ensure the
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context coherence of multi-word images. The corresponding pa-
rameters 𝜆1, 𝜆2 and 𝜆3 for the inpainting network with semantic
supervising module are set to 0.5, 0.001, 1, respectively. We set up
the semantic context training for 10 epochs after executing the
content training for 30 epochs. Furthermore, handwritten dataset
and printed dataset are trained independently.

For other real data, we perform some preprocessing operations to
convert it into inputable characters. We first use EAST [36] to mark
the text regions and then apply theMSER [5] algorithm to detect the
binary masks of individual characters. In fact, the main difference
for a Chinese character (after propocessing) is the font style. Our
model can automatically match the same or similar font style and
use it as a basis for predicting and filling in missing strokes.

The proposed network is implemented in PyTorch, which adopts
Adam as optimizer. The learning rate is set at 0.0001 for both gen-
erator and GSSM, and 0.00001 for discriminator until losses level
off. The operating system is Ubuntu18.04 running on Intel Core
i7-10700K CPU. The network training process is performed on RTX
2080Ti GPU with 11GB GPU memory and 16GB RAM. The training
time varies from 27 hours to 35 hours on different datasets.

4.3 Qualitative Results
To validate the proposed method, we compare the inpainting per-
formance with the previous state-of-the-art methods: the Exemplar-
Based Image Inpainting (EBII) [7], the Fully Convolutional Network
for Line Drawings (LDFCN) [25], the Generative Adversarial Net-
work for Handwritten Chinese Character (HCCGAN) [15] and HAN
[4]. Four sets of semantically coherent images with regular or ir-
regular masks are compared by four methods.

It is worth noting that the incomplete regions are highlighted in
grey in the paper. Actually, we don’t need to mark the incomplete
regions in the training and testing process. As illustrated in Figure
4, the traditional method EBII synthesizes unrecognizable charac-
ters due to the large mask. Other deep learning-based methods,
such as HCCGAN and LDFCN, significantly improve the generative
results, but still produce blurry or even disordered strokes. HAN
uses hierarchical discriminator to make the characters clear but it
is easy to generate pseudo or ambiguous characters. Our method
can accurately capture visual information, so as to avoid the phe-
nomenon of gaps or local blurring for a single Chinese character as
much as possible. Especially for printed Chinese characters, even
if the fonts are different, our method can still maintain the glyph
structure.

When ignoring the global semantics, characters with similar
glyph structures are easily confused during the inpainting process.
Relying only on the information of a single image is likely to output
similar ambiguous characters. In our work, the semantic module
utilizes pre-trained sentence embeddings as constraints to supervise
the content of all character images. It is worth noting that even if
a single character is almost completely occluded, our method can
still learn the semantic information to output the correct character.

4.4 Quantitative Evaluation
Like other image synthesis tasks, image inpainting lacks good quan-
titative evaluation metrics. Nevertheless we follow the previous
image inpainting works by reporting Peak Signal to Noise Ratio

Table 2: Results in terms of PSNR, SSIM,OCR confidence and
accuracy for ablation study.

Methods PSNR SSIM Confidence OCR
content 25.3462 0.8937 0.7984 0.8726
content + rec 26.6089 0.9008 0.8122 0.8803
content + rec + adv 27.1881 0.9024 0.8248 0.8813
content + rec + adv
+ sem

27.7124 0.9043 0.8272 0.9014

ground truth - - 0.8278 0.9057

Input

content + rec

content + rec +
adv

content + rec +
adv + sem

Ground Truth

Figure 6: Ablation study. Some generated handwritten or
printed characters are ambiguous although they have high
visual credibility. The method with semantic module can
correctly recognize the glyph structure so that the ambigu-
ity can be reduced.

(PSNR) and Structural Similarity (SSIM) for visual evaluation cri-
terion, as shown in Table 1. Compared with the results of PSNR +
SSIM, our final results has comparable performance, because PSNR
and SSIM may struggle to distinguish high similarity images such
as pseudo or ambiguous characters. Therefore only relying on these
two evaluation metrics may not be an effective metric. In order
to evaluate our method more effectively, we further adopt Optical
Character Recognition (OCR) confidence and OCR accuracy for
semantics assessment. DenseNet [11] and CRNN [27] are selected
for OCR quantitative indicators. The final results after 40 epochs are
shown in Table 1. The proposed method achieves better, according
to OCR accuracy and confidence.

4.5 Ablation study
We now turn our attention to the key assumption of this task: con-
textual semantic information helps Chinese character inpainting.
We analyze how GSSM contributes to the final performance of
image inpainting. We also show the influence of different factors
of the proposed network by adding/removing corresponding loss
functions. Figure 6 illustrates the results with different fonts and
masks. Content loss and reconstruction loss in the second row en-
able to maintain the local continuation of thickness and curvature,
which can correctly restore the structure of strokes for line ends.
Adversarial loss in the third row improves the relative position
of strokes, which makes full use of glyph visual information to
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reduce the appearance of pseudo characters. Semantic loss at the
bottom row improves the correctness of neighbor characters from
global context semantic constraints. The quantitative results are
illustrated in Table 2. The comparison indicates that contextual
semantic guidance is a crucial part to the success of our model.

Incomplete
Chinese
character
image

Character
extraction

Character
inpainting

(a) (b) (c) (d) (e)

Figure 7: Inpainting results on incomplete characters from
ancient books. Note that the bottom row(e) indicates the re-
sult "Three-Character Classic", rather than "Two-Character
Classic".

4.6 Application
We apply our model to ancient books reparation. As illustrated in
Figure 7, our model is able to correctly reconstruct the missing part
of one character. Especially in Figure 7(e), each extracted character
is individually legal, but it is unreasonable to connect them together
to form the "Two Character Classics". While our full model can
reconstruct the correct content, that is, "Three Character Classics".

Our algorithm can be also employed to recover various types
of incomplete texts, such as those caused by light reflection or
paper damage. Under semantic supervision mode, our model learns

to correctly synthesize the original characters according to the
contextual semantics of the characters. Some examples are shown
in Figure 8.

5 CONCLUSION
This paper demonstrates the effectiveness of introducing contextual
semantic guidance into Chinese character image inpainting. We
propose a contextual semantics enhanced inpainting scheme that
combines the glyph features of the image and semantic informa-
tion as the generation condition. The proposed method can restore
incomplete Chinese character images while maintaining content in-
formation and style consistency, even if some characters are almost
unrecognizable. Meanwhile, the contextual semantics module can
largely avoid the generation of ambiguous characters with similar
glyph representations. We also built a dedicated Chinese character
image dataset including handwritten and printed for performance
evaluation. The experimental results demonstrate that the proposed
method outperformed compared models in subjective and objective
comparisons, and the model outputs are contextual coherent. It
should be pointed out that the restoration effect of Chinese charac-
ters is greatly affected by its semantics from pre-trained language
module. For ancient literature, there is little semantic reference
information available. Moreover, our method may fail if Chinese
character images are badly damaged. Future work may consider
inpainting task of other ideographic and phonetic scripts such as
Japanese and English.

Incomplete
Chinese
character
image

Character
extraction

Inpainting
results

Figure 8: Inpainting results on incomplete characters caused
by light reflectance or paper damage.

ACKNOWLEDGEMENTS
This work was supported by National Key Research and Develop-
ment Program of China under Grant(No.2019YFC1521200). And
we also thank for the support of NVIDIA Corporation with the
donation of the GPU used for this research.

REFERENCES
[1] Coloma Ballester, Marcelo Bertalmio, Vicent Caselles, Guillermo Sapiro, and Joan

Verdera. 2001. Filling-in by joint interpolation of vector fields and gray levels.
TIP 10, 8 (2001), 1200–1211.

[2] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan B Goldman. 2009.
PatchMatch: A randomized correspondence algorithm for structural image edit-
ing. ToG 28, 3 (2009), 24.

[3] Marcelo Bertalmio, Guillermo Sapiro, Vincent Caselles, and Coloma Ballester.
2000. Image inpainting. In Siggraph. ACM, USA, 417–424.

Poster Session 2 MM ’21, October 20–24, 2021, Virtual Event, China

1836



[4] Jie Chang, Yujun Gu, Ya Zhang, and Yan-Feng Wang. 2018. Chinese Handwriting
Imitation with Hierarchical Generative Adversarial Network. In BMVC. BMVA
Press, UK, 290.

[5] Huizhong Chen, Sam S Tsai, Georg Schroth, David M Chen, Radek Grzeszczuk,
and Bernd Girod. 2011. Robust text detection in natural images with edge-
enhanced maximally stable extremal regions. In ICIP. IEEE Computer Society,
USA, 2609–2612.

[6] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. 2016. Fast and
accurate deep network learning by exponential linear units (ELUs). In ICLR.
JMLR.org, USA, 1–14.

[7] Antonio Criminisi, Patrick Pérez, and Kentaro Toyama. 2004. Region filling and
object removal by exemplar-based image inpainting. TIP 13, 9 (2004), 1200–1212.

[8] Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, and
Guoping Hu. 2019. Pre-training with whole word masking for chinese bert. arXiv
preprint arXiv:1906.08101 (2019).

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert:
Pre-training of deep bidirectional transformers for language understanding. In
NAACL-HLT. Association for Computational Linguistics, USA, 4171–4186.

[10] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and
Ruslan R Salakhutdinov. 2012. Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012).

[11] Gao Huang, Zhuang Liu, and Laurens Van Der Maaten. 2017. Densely connected
convolutional networks. In CVPR. IEEE Computer Society, USA, 4700–4708.

[12] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In ICML. JMLR.org, USA,
448–456.

[13] Shunsuke Kitada, Ryunosuke Kotani, and Hitoshi Iyatomi. 2018. End-to-End Text
Classification via Image-based Embedding using Character-level Networks. In
AIPR. IEEE Computer Society, USA, 1–4.

[14] Praveen Krishnan, Kartik Dutta, and C. V. Jawahar. 2018. Word Spotting and
Recognition Using Deep Embedding. In IAPRW. IEEE, USA, 1–6,.

[15] Jianwu Li, Ge Song, and Minhua Zhang. 2020. Occluded offline handwritten
Chinese character recognition using deep convolutional generative adversarial
network and improved GoogLeNet. Neural Computing and Applications 32, 9
(2020), 4805–4819.

[16] Guilin Liu, FitsumAReda, Kevin J Shih, Ting-ChunWang, AndrewTao, and Bryan
Catanzaro. 2018. Image inpainting for irregular holes using partial convolutions.
In ECCV. Springer, USA, 85–100.

[17] Yuxian Meng, Wei Wu, Fei Wang, Xiaoya Li, Ping Nie, Fan Yin, Muyu Li, and
Qinghong Han. 2019. Glyce: Glyph-vectors for Chinese character representations.
In NIPS. Curran Associates, USA, 2746–2757.

[18] Fang Miao and Li Feng. 2020. Research on Character Image Inpainting based
on Generative Adversarial Network. In ICCST. IEEE Computer Society, USA,
137–140.

[19] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. 2018.
Spectral normalization for generative adversarial networks. In ICLR. JMLR.org,
USA, 1–26.

[20] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A
Efros. 2016. Context encoders: Feature learning by inpainting. In CVPR. IEEE
Computer Society, USA, 2536–2544.

[21] Zhi Qiao, Yu Zhou, Dongbao Yang, Yucan Zhou, and Weiping Wang. 2020. SEED:
Semantics Enhanced Encoder-Decoder Framework for Scene Text Recognition.
In CVPR. IEEE Computer Society, USA, 13528–13537.

[22] Alec Radford, Luke Metz, and Soumith Chintala. 2016. Unsupervised representa-
tion learning with deep convolutional generative adversarial networks. In ICLR.
JMLR.org, USA, 1–16.

[23] Jose A. Rodriguez-Serrano, Albert Gordo, and Florent Perronnin. 2015. Label
Embedding: A Frugal Baseline for Text Recognition. IJCV 113, 3 (2015), 193–207.
https://doi.org/10.1007/s11263-014-0793-6

[24] Prasun Roy, Saumik Bhattacharya, Subhankar Ghosh, and Umapada Pal. 2020.
STEFANN: scene text editor using font adaptive neural network. In CVPR. IEEE
Computer Society, USA, 13228–13237.

[25] Kazuma Sasaki, Satoshi Iizuka, and Edgar Simo-Serra. 2017. Joint gap detection
and inpainting of line drawings. In CVPR. IEEE Computer Society, USA, 5725–
5733.

[26] Kazuma Sasaki, Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa. 2018.
Learning to restore deteriorated line drawing. The Visual Computer 34, 6-8 (2018),
1077–1085.

[27] Baoguang Shi, Xiang Bai, and Cong Yao. 2016. An end-to-end trainable neural
network for image-based sequence recognition and its application to scene text
recognition. PAMI 39, 11 (2016), 2298–2304.

[28] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. In ILSVRC Workshop. JMLR.org, USA, 1–14.

[29] Tzu-Ray Su and Hung-Yi Lee. 2017. Learning chinese word representations from
glyphs of characters. In EMNLP. ACL, USA, 1–10.

[30] M Sun, J Li, Z Guo, Z Yu, Y Zheng, X Si, and Z Liu. 2016. Thuctc: an efficient
chinese text classifier. GitHub Repository (2016).

[31] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS. Curran Associates, USA, 1–11.

[32] Tomas Wilkinson and Anders Brun. 2016. Semantic and Verbatim Word Spotting
Using Deep Neural Networks. In ICFHR. IEEE Computer Society, USA, 307–312.

[33] Chao Yang, Xin Lu, Zhe Lin, Eli Shechtman, Oliver Wang, and Hao Li. 2017.
High-Resolution Image Inpainting using Multi-Scale Neural Patch Synthesis. In
CVPR. IEEE Computer Society, USA, 4076–4084.

[34] Deli Yu, Xuan Li, Chengquan Zhang, Tao Liu, Junyu Han, Jingtuo Liu, and Errui
Ding. 2020. Towards accurate scene text recognition with semantic reasoning
networks. In CVPR. IEEE Computer Society, USA, 12113–12122.

[35] Xiang Zhang and Yann LeCun. 2017. Which encoding is the best for text classifi-
cation in chinese, english, japanese and korean? arXiv preprint arXiv:1708.02657
(2017), 1–24.

[36] Xinyu Zhou, Cong Yao, He Wen, Yuzhi Wang, Shuchang Zhou, Weiran He, and
Jiajun Liang. 2017. East: an efficient and accurate scene text detector. In CVPR.
IEEE Computer Society, USA, 5551–5560.

Poster Session 2 MM ’21, October 20–24, 2021, Virtual Event, China

1837


