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Abstract

In this paper, we propose a new method to estimate the optical flow
fields of a sequence of images. With the assumption that the ve-
locity is constant from frame to frame along with the flow vectors,
which is very common in real scene, we develop a new constraints
on the flow field. We formalize the estimation of flow fields as
an energy minimization problem and adapt the iterative reweighted
least square (IRLS) to solve it. To make the penalties robust to out-
liers, we mainly consider the Charbonnier penalty. We follow the
modern optimization procedure including coarse-to-fine schema,
graduated non-convex (GNC) schema to get the final result. The
effectiveness of our method is borne out by experiments on both
synthetic and real scene.
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1 Introduction

A key problem in the processing of video is estimating the
motion between video frames. Once the optical flow is esti-
mated, a wide variety of tasks such as video compression, super-
resolution [Zhao and Sawhney 2002], motion-based segmentation
[Kühne et al. 2001], and image registration can be achieved. Opti-
cal flow estimation based on two frames has been extensively re-
searched with several classes of methods developed, such as varia-
tional framework [Jia and Matsushita 2010], Bayesian framework
[Barbu and Yuille 2004] and other methods [Baker et al. 2007].
Many applications estimate the optical flow of a video using every
two frames [Chuang et al. 2002] [Zhang et al. 2011].

The basis of differential optical flow is the motion constraint
equation. It assumes the brightness of the corresponding pix-
els in two frames remains the same. Modern algorithms for
estimating the optical flow often adapt the variational frame-
work [Horn and Schunck 1981] and the coarse-to-fine refinement
[Anandan 1989].

In the last two decades, the quality of optical flow estimation has
increased drastically. Starting from the original work of Horn and
Schunck [Horn and Schunck 1981] as well as Lucas and Kanade
[Lucas and Kanade 1981] on optical flow estimation, there are
many new concepts for dealing with the shortcomings of previous
methods. Non-convex functions has replaced the quadratic func-
tion which is used in [Horn and Schunck 1981] to handle the dis-
continuities in the flow field [Black and Anandan 1996]. Gradu-
ated non-convex (GNC) schema is very effective for optimizing the
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non-convex penalty. It combines a quadratic objective with a ro-
bust objective in varying proportions, from fully quadratic to fully
robust [Sun et al. 2010]. Coarse-to-fine strategies [Anandan 1989]
as well as non-linearize models have been used to tackle with the
large displacement.

Comparing to the two-frame optical flow estimation, there is rela-
tively small amount of work on multi-frame optical flow estimation.
Most of the applications which involve with estimating optical flow
for a video just calculate the flow field between every two frames
[Chuang et al. 2002]. Since there are less constraints in two frames
comparing to the whole frames, the flow fields is much less accurate
than that of using whole frames.

To estimate the optical flows for a video, it is natural to
use multi-frame to improve the result. In [Brox et al. 2004]
[Bruhn et al. 2006], a 3D gradient ∇3 is introduced to impose the
temporal constraints. In [Liu 2009], C. Liu introduces a more so-
phistical temporal constraint to improve the estimation of video op-
tical flow and uses iterative reweighted least square (IRLS) to solve
the problem. All these methods improves the results.

In this paper, we propose a new temporal constraint on image se-
quences, which can get more precise result than [Liu 2009]. We
formalize the optical flow estimation in energy minimization frame-
work and solve the energy function using IRLS. As suggested in
[Sun et al. 2010], we implement our algorithm in coarse-to-fine

framework. Besides, we choose Charbonnier ρ(x) =
√
x2 + ǫ2

as the penalty function, which achieves much more results than the
quadratic HS penalty function ρ(x) = x2.

The remaining of this paper is organized as follows. In Sect. 2, we
talk about the current available algorithms for both two-frame and
multi-frame flow estimation. Sect. 3 describes our assumption and
the energy functional that used to estimate the video optical flow.
In Sect. 4, the optimization details is explained. The results and
comparisons with other method are shown in Sect. 5. Finally, we
discuss our future work and conclude this paper in Sect. 6.

2 Previous Work

The variational method has proven to be a very effective approach
in solving the optical flow estimation problem. Since the start-
ing work of Horn and Schunck [Horn and Schunck 1981], there are
many modifications on it. The quadratic penalty is replaced by a
seriary of robust penalty, such as L1 norm [Bruhn et al. 2005] and
Lorentzian penalty [Black and Anandan 1996]. The efforts have
also been put into improving the optical flow constraints.

3 Optical flow model

Assume I(x, y, t) denotes a rectangular image sequence at time t
where I : Ω ⊂ R

3 → R. Let the image lattice at time t be p =
(x, y, t) and the underlying flow field be w = (u(p), v(p), 1),
where u(p) and v(p) is the horizontal and vertical components of
the flow field respectively. In the following subsections, we will
build a framework for flow estimation.
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3.1 Robust data function

The basis of the optical flow estimation is by assuming the grey
value of a pixel is not changed by the displacement, i.e.,

I(p) = I(p+w). (1)

If we perform 1st order Taylor series expansion on I(p + w) at
I(p) and omit the higher order terms, we can obtain the famous
motion constraint equation [Horn and Schunck 1981],

Ixu+ Iyv + It = 0, (2)

where Ix and Iy is the horizontal and vertical derivatives respec-
tively, It is the temporal derivative. Since Eqn.(2) is only valid
under the assumption that the image changes linearly along the dis-
placement, which is in general not the case, especially for large u
and v, our model will use the original grey value constancy assump-
tion Eqn. (1).

The grey value constancy assumption is not valid when the bright-
ness of the video is slightly changed, which is very common in the
natural scenes. Hence the gradient constancy assumption is pro-
posed, [Brox et al. 2004] [Bruhn and Weickert 2005]

∇I(p) = ∇I(p+w), (3)

where ∇ = (∂x, ∂y) denotes the spatial gradient.

Combining the grey value constancy and the gradient constancy as-
sumptions on optical flow w, it is straightforward to derive the so
called data term of the energy function,

ED(w) =

∫

Ω

ρD(|I(p+w)−I(p)|2+λ|∇I(p+w)−∇I(p)|2).
(4)

Here λ is a weight between the two assumptions and ρD(·) can be
any robust function.

3.2 Edge-preserving smoothness function

As suggested by [Sun et al. 2008], [Wedel et al. 2009a] and
[Sun et al. 2010], we define our smoothness term as

ES(w) =

∫

Ω

ω(p)ρS(||∇w||22)dp, (5)

where || · ||2 is the ℓ2 norms and ρS is any robust function. ω(p)
is the simple structure adaptive map that maintains motion discon-
tinuities: [Werlberger et al. 2009]

ω(p) = exp(−||∇I(p)||κ). (6)

3.3 Temporal constraints

We assume the velocity is constant from frame to frame along with
the flow vectors. Formally, we assume,

w(p) = w(p+w). (7)

Here, the w(p+w) is the warped flow field at time t+1 to time t
according to the flow w. For each two successive frames, we prefer
the following function to be small,

ET (w) =

∫

Ω

ρT (||w(p)−w(p+w)||2)dp, (8)

where ρT is a robust function.

3.4 Energy functional

With the description above, it is straightforward to derive an energy
functional that penalizes deviations from these model assumption,

E(w) =

∫

t

ED(w) + αES(w) + βET (w)dt, (9)

where α and β is the weight. We sum the whole errors over tem-
poral dimension to get a global optima flow field for the video.
Note that although ρD , ρS and ρT can be any robust function, here

we restrict it to Charbonnier penalty ρ(x) =
√
x2 + ǫ2 and set

ǫ = 0.001 in our experiments.

4 Minimization

It is difficulty to estimate the flow fields simultaneously us-
ing Eqn.(9). We adapt the incremental flow framework
[Brox et al. 2004] to estimate the flow field. Assume w is known,
we just need to estimate the incremental dw = (du, dv). So the
objective function in Eqn.(9) can be rewritten as,

E(dw) =
∫

t

∫

Ω

ρD(|I(p + w + dw) − I(p)|
2
+ λ|∇I(p + w + dw) − ∇I(p)|

2
)

+ ω(p)ρS(∇(w + dw))

+ ρT (w(p) + dw(p) − w(p + w + dw)).
(10)

Brox et. al. [Brox et al. 2004] solves the energy function Eqn.(10)
using Euler-Lagrange variational approach. The mathematical
derivation is rather complicated since a function in the continu-
ous spatial domain needs to be optimized. In [Liu 2009], Liu pro-
posed a discrete version to solve the optimization problem, Iterative
Reweighted Least Square (IRLS). Furthermore, he has proved the
equivalence between IRLS and the variational optimization. Here,
we follow the IRLS schema to minimize Eqn.(10).

Let
Iz(p) = I(p+w)− I(p)

Ix(p) = ∂xI(p+w)

Iy(p) = ∂yI(p+w)

Ixx(p) = ∂xxI(p+w)

Iyy(p) = ∂yyI(p+w)

Ixy(p) = ∂xyI(p+w)

Izx(p) = ∂xI(p+w)− ∂xI(p)

, (11)

then the I(p+w)−I(p) can be linearized by 1st Taylor expansion,

I(p+w)− I(p) ≈ Iz(p) + Ix(p)du(p) + Iy(p)dv(p). (12)

Since

||∇I(p+w + dw)−∇(p)||2 = (∂xI(p+w + dw)− ∂xI(p))
2

+ (∂yI(p+w + dw)− ∂yI(p))
2

(13)
and

∂xI(p+w + dw)− ∂xI(p) = Izx(p) + duIxx(p) + dvIxy(p)

∂yI(p+w + dw)− ∂yI(p) = Izy(p) + duIxy(p) + dvIyy(p)
,

(14)
we can now rewrite Eqn.(13) as

||∇I(p+w + dw)−∇(p)||2 = (Izx(p) + duIxx(p) + dvIxy(p))
2

+ (Izy(p) + duIxy(p) + dvIyy(p))
2

(15)

316



We denote the flow field at time t by wt = (ut, vt, 1), the incre-
mental of flow field by dwt = (dut, dvt). We now vectorize ut, vt,
dut, dvt into U t, V t, dU t, dV t respectively. Let It∗ be the corre-
sponding derivatives in Eqn.(11), where ∗ can be any subscribes in
Eqn.(11). Let Itx = diag(Itx), I

t
y = diag(Ity), I

t
xx = diag(Itxx),

Itxy = diag(Itxy), I
t
yy = diag(Ityy), Ψ = diag(ω) be the diag-

onal matrices where the diagonals are the image derivatives or the
weight. We use Dx and Dy to denote the matrix corresponding x-
and y-derivative filters, i.e. DxU = u ∗ [0,−1, 1], where the ∗ is
the convolution operator. We use the δp to denote a vector that has
only one nonzero value (one) at position p so that δpI = I(p).
Then the continuous function in Eqn.(10) can now be discretized
as,

E(dU, dV ) =
∑

t

∑

p

ρD(
(

δ
T
p (Iz + IxdU

t + IydV )
)2

+

λ
(

(δTp (Izx + IxxdU
t + IxydV

t))2 + (δTp (Izy + IxydU
t + IyydV

t))2
)

)

+ αρS(
(

δ
T
p ΨDx(U

t + dU
t)
)2

+
(

δ
T
p ΨDy(U

t + dU
t)
)2

+

(

δ
T
p ΨDx(V

t + dV
t)
)2

+
(

δ
T
p ΨDy(V

t + dV
t)
)2

)

+ βρT

(

δ
T
p (U

t + dU
t −H

t
U

t+1)
)

,

(16)
where Ht is the bilinear warping matrix corresponding to the flow
field (U t + dU t, V t + dV t). The main idea of iterative reweighted
least square (IRLS) [Meer et al. 2004] is to find the dU, dV so that
( ∂E
∂dUt ,

∂E
∂dV t ) = 0.

Let

f
t
p =

(

δ
T
p (Iz + IxdU

t + IydV )
)2

+

λ(
(

δ
T
p (Izx + IxxdU

t + IxydV
t)
)2

+
(

δ
T
p (Izy + IxydU

t + IyydV
t)
)2

)

g
t
p =

(

δ
T
p ΨDx(U

t + dU
t)
)2

+
(

δ
T
p ΨDy(U

t + dU
t)
)2

+

(

δ
T
p ΨDx(V

t + dV
t)
)2

+
(

δ
T
p ΨDy(V

t + dV
t)
)2

h
t
p =

(

δ
T
p (U

t + dU
t −H

t
U

t+1)
)2

l
t
p =

(

δ
T
p (U

t−1 −H
t−1

U
t −H

t−1
dU

t)
)2

,

(17)
we can derive for

∂E

∂dUt
=

∑

p

ρ
′

D(f
t
p
)
∂ft

p

∂dUt
+ αρ

′

S(g
t
p
)
∂gt

p

∂dUt
+ β

(

ρ
′

T (h
t
p
)
∂ht

p

∂dUt
+ ρ

′

T (l
t
p
)

∂lt
p

∂dUt

)

= 2
∑

p

ρ
′

D(fp)

(

I
t
xδpδ

T
p
I
t
xdU

t
+ I

t
xδpδ

T
p
(I

t
z + I

t
ydV

t
)

+ I
t
xxδpδ

T
p
I
t
xxdU

t
+ I

t
xxδpδ

T
p
(Izx + IxydV

t
)

+ I
t
xyδpδ

T
p
I
t
xydU

t
+ I

t
xyδpδ

T
p
(Izy + IyydV

t
)

)

+ αρ
′

S(gp)
(

D
T
x (Ψ

t
)
T
δpδ

T
p
Ψ

t
D

T
x + D

T
y (Ψ

t
)
T
δpδ

T
p
Ψ

t
D

T
y

)(

U
t
+ dU

t)

+ β
(

ρ
′

T (h
t
p
)δpδ

T
p
dU

t
+ ρ

′

T (l
t
p
)

∂lt
p

∂dUt

)

.

(18)

Note that
∑

p
δpδ

T
p is the identity matrix and Ix, Iy are the diago-

nal matrix. We also define the vector Pt
D = diag(ρ′D(fp)),P

t
S =

diag(ρ′S(gp)) P
t
h = diag(ρ′T (h

t
p)),P

t
l = diag(ρ′T (l

t
p)) and the

generalized Laplacian filter Lt,

L
t = D

T
x (Ψ

t)TPt
S(Ψ

t)Dx +D
T
y (Ψ

t)TPt
S(Ψ

t)Dy, (19)

and Mt

M
t = P

t
h + (Ht)TPt

lH
t
. (20)

Then the Eqn.(18) can be rewritten as:

∂E

∂dU t
= 2

(

P
t
D

(

(Itx)
2 + λ((Itxx)

2 + (Itxy)
2) + αL+ βM

t
)

dU
t

+P
t
D

(

I
t
xI

t
y + λ(ItxxI

t
xy + I

t
xyI

t
yy)

)

dV
t

+P
t
D

(

I
t
xI

t
z + λ(ItxxI

t
zx + I

t
xyI

t
zy)

)

+ αL
t
U

t

+ β
(

M
t
U

t −P
t
hH

t
U

t+1 − (Ht−1)TPt
lU

t−1
)

)

.

(21)

Using the same method, one can show that,

∂E

∂dV t
= 2

(

P
t
D

(

I
t
xI

t
y + λ(ItxxI

t
xy + I

t
xyI

t
yy)

)

dU
t

+P
t
D

(

(Ity)
2 + λ((Itxy)

2 + (Ityy)
2) + αL

t + βM
t
)

dV
t

+P
t
D

(

I
t
yI

t
z + λ(ItxyI

t
zx + I

t
yyI

t
zy)

)

+ αL
t
V

t

+ β
(

M
t
V

t −P
t
hH

t
V

t+1 − (Ht−1)TPt
lV

t−1
)

)

.

(22)
We consider the non-linear term Pt

D,Pt
S ,P

t
h and Pt

h as a
weight, and using the following fixed-point algorithm to solve

(
∂E

∂dU t
,

∂E

∂dV t
) = 0 for dU t and dV t:

(a) Initialize dU t = 0, dV t = 0 for every t.

(b) Calculate the weight matrix Pt
D,Pt

S ,P
t
h and Pt

h.

(c) Solve the following linear equation system









∂E

∂dU t

∂E

∂dV t









= 0; (23)

(d) If dU and dV converge, stop; otherwise, goto (b).

In [Liu 2009] Liu explained why this algorithm is called iterative
reweighted least square. As mentioned in Sect.(1), we here incor-
porate the graduated non-convex (GNC) schema for the robust data
term and smooth term, which linearly combines a quadratic objec-
tive with a robust objective in varying proportions. To tackle with
large displacement in optical flow, the energy minimization proce-
dure is embedded into a coarse-to-fine approach to avoid conver-
gence to unfavorable local minima. We employ image pyramids
with a down-sampling factor of 2 for this purpose. Actually, as
mentioned in [Sun et al. 2010]the down-sampling factor dost little
matter to the final result. The resulting numerical schema is sum-
marized in Algorithm 1.

5 Evaluation and experimental results

In this section, we present our results and comparisons with other
algorithms. Although there are lots of groundtruth data that avail-
able in [Baker et al. 2007], there are not any for video optical flow.
All the groundtruth data in [Baker et al. 2007] is for two frames.
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Algorithm 1 Numerical schema for our algorithm.

Input: A sequence of image I1, I2, · · · , In,
Output: The corresponding optical flow, uv1, uv2, · · · , uvn−1

for L = 0 to max level do
Calculate restricted pyramid images LI1, LI2, · · · , LIn

end for
Perform ROF Decomposition described in [Wedel et al. 2009b]
Initialize Luv1 = 0, Luv2 = 0, · · · , Luvn−1 = 0 and α = 1
while α ≥ 0 do

for L = 0 to max lelevs do
for W = 0 to max warps do

Calculate the weight matrix Pt
D,Pt

S ,P
t
h and Pt

h;
Solve the linear system Eqn.(23) using current weight;

end for
Upsample Luv to next pyramid level;

end for
Update α;

end while

With TC Avg. EPE Without TC Avg. EPE

Rubble 0.380 0.411

Car 0.315 0.381

Toy 0.334 0.403

Table 0.297 0.335

Table 1: Average end-point error (EPE) on the annotated motion,
which we regards as groundtruth.

In order to get the groundtruth flow field of a video, we use the
method proposed by Liu to generate groundtruth data. Fig. 1 we
get by annotating each layers of the video. The first column is the
layer labeling and the second column shows the annotated motion,
which we regard as the groundtruth data.

The third column in Fig. 1 shows the flow fields that estimated
without the temporal constraints, i.e., the flow fields estimated
using only two adjacent frames using the method proposed in
[Black and Anandan 1996]. The last column in Fig. 1 is the op-
tical flow estimate using our method.

We have measured the temporal constraints quantitatively. Table 1
shows the average end point error (EPE) between the groundtruth
and the corresponding optical flow.

Our constraints is quite useful for crowd segmentation. In
[Ali and Shah 2007] Saad first utilize crowd flow segmentation to
analyze video. It first estimate the flow fields for each two frame,
then segment the flow field according to the similarity between each
other. Since the flow field of a crowd is thinner than the structure, it
is difficult to observe it without temporal constraints. The example
is shown in Fig. 2. Fig. 2(a) and Fig. 2(b) are two frames in a crowd
video, Fig. 2(c) is the flow field that estimated using temporal con-
straints we propose and Fig. 2(d) is the one without using temporal
constraints. Note the red-rectangle region. There is a small flow in
the original image sequence in that area. The algorithm proposed
by this paper can easily detect the thin flow field.

6 Conclusion and future work

In this paper, we assume the velocity is constant from frame to
frame along with the flow vectors, which is very common in general
scene. Based on this assumption, we propose a temporal constraint
on flow fields of videos. We formalize this constraint into energy
minimization framework and minimize the objective function using
IRLS schema. The experiments shows that the results have been

(a) (b)

(c) (d)

Figure 2: The application of our constraints on the crowd segmen-
tation.

improved a lot.

However, as mentioned in Sect. 5, there are lots of parameters that
need the user to determine. Unlike [Sun et al. 2008], in which a sta-
tistical model between grey value constancy and gradient constancy
is learned from many, our method is a heuristic formulation.

For future work, we intend to concentrate on the current constraints
of our method. Although our algorithm can deal with most scenes,
there are a lot of parameters that makes it difficult to get a good
result.
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