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Abstract—Online virtual navigation systems enable users to hop
from one panorama to another, which belong to a sparse
point-to-point collection, resulting in a less pleasant viewing
experience. In this paper, we present a novel method, namely
Cube2Video, to support navigating between cubic panoramas
in a video-viewing mode. Our method circumvents the intrinsic
challenge of cubic panoramas, i.e., the discontinuities between
cube faces, in an efficient way. The proposed method extends
the matching-triangulation-interpolation procedure with special
considerations of the spherical domain. A triangle-to-triangle
homography-based warping is developed to achieve physically
plausible and visually pleasant interpolation results. The temporal
smoothness of the synthesized video sequence is improved by
means of a compensation transformation. As experimental results
demonstrate, our method can synthesize pleasant video sequences
in real time, thus mimicking walking or driving navigation.

Index Terms—Cubic panoramas, Temporal smoothness, Tri-
angle-to-triangle homography-based warping, Video-viewing
mode, Virtual navigation.

I. INTRODUCTION

P ANORAMA-BASED virtual navigation systems become
prevalent to ordinary people via the Internet, including

Google Street View [1], Bing Maps Streetside [2], etc. Due to
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the bandwidth limit, current virtual navigation systems usually
provide a sparse point-to-point collection of panoramas. The
common navigation control is to enable users navigate within
one panorama (panning, zooming, and rotating) [3], [4], and hop
from one panorama to another. The hopping manner is simple
and fast, yet may bring users apparent visual discontinuity. Al-
though this problem can be alleviated by image transition like
cross-fading, as existing navigation systems did, it is often dif-
ficult to distinguish the scene clearly during the transition.
A more physically plausible solution is generating interme-

diate panoramas from reference ones [5], [6], [7], [8], [9], [10].
Some early works [5], [6], [8], [11], [12] operate on cylindrical
panoramas, while some recent works [9], [13], [10] operate on
cubic panoramas, which suffer less non-linear deformation and
have native hardware support. The most challenging problem
in using cubic panoramas is to tackle the discontinuity between
cube faces. For instance, Shi et al. [9] developed a pixel-based
method tracing the optical ray of each pixel. Kolhatkar and La-
ganière [13] estimated the optical flow fields for each cube face
extended by a boundary projected from adjacent faces. Zhang
et al. [10] divided cube faces into central and boundary re-
gions for triangulation, and synthesized new views via face-to-
face homography transformation. Although these methods try
to solve the discontinuity problem, they still have obvious arti-
facts, and/or are tedious for real-time navigation.
In this paper, we present a novel method that can circumvent

the cube discontinuity problem in an easy and effective way.
Our method is based on the simple concept that the cube is a
representation of the sphere. Accordingly, we can project the
cubic panorama on the sphere, and perform manipulations in
the spherical domain.
The major contributions of our paper is three-fold. Firstly,

we extend the matching-triangulation-interpolation procedure
[7], [14], [10] with special considerations of the spherical do-
main (Section III). Specifically, we employ an angular error
metric in the spherical domain to get reliable sparse correspon-
dences between two cubic panoramas. Convex hull triangula-
tion is then applied to triangulate the panorama normalized on
the unit sphere. In the interpolation, a new warping scheme is
performed between pairs of spherical triangles. The second con-
tribution is proposing a (spherical) triangle-to-triangle warping,
which combines a homography transformation and an affine
transformation. Using this warping, we are able to achieve phys-
ically plausible and visually pleasant interpolation results. As
the third contribution, we describe a compensation transforma-
tion to improve the temporal smoothness of the synthesized
video (Section IV). Finally, parallel implementation for the new
view generation is developed to achieve real time performance
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(Section V). As experimental results demonstrate, our method
can synthesize satisfied videos for both in-door and out-door
panorama sequences (Section VI).

II. RELATED WORK

A. View Interpolation

The introduction of view interpolation can date back to the
mid-90s. A main stream of existing methods are based on op-
tical flow, disparity or depth information [15], [16], [17], which
need to establish dense correspondences between reference im-
ages. Another type of view interpolation is based on projective
geometry. Seitz and Dyer [18] introduced view morphing that
interpolates along the base line of an image pair and obtains
physically plausible images. Their method was further extended
by several works [19], [20], [21]. There also exist triangulation-
based interpolation techniques. Lhuillier and Quan [22] pre-
sented joint view triangulation, which generates novel views by
warping the matched triangles. This work was improved by Siu
and Lau [14], [23]. After constructing overlap-solved triangular
meshes for three reference images, they developed a transfor-
mation-based warping for arbitrary view synthesis. This work
is at the basis of our interpolation algorithm.

B. Panorama Interpolation and Navigation

Panorama interpolation considers a large field of view [24],
e.g., 360 degrees in our work. According to the underlying
spherical mapping representations, most existing techniques
fall into two categories, using cylindrical panoramas [5], [6],
[8], [11], [12], and using cubic panoramas [9], [13], [10]. For
cylindrical panoramas, there are pixel-based solutions [5], [8],
and triangle-based warping methods [6], [11]. In addition, the
view synthesis for catadioptric omni-directional images can be
done through rectification to cylindrical panoramas [12].
For cubic panoramas, Shi et al. [9] performed a search

guided by color consistency for each pixel along its optical
ray to find the correspondences in reference panoramas. Kol-
hatkar and Laganière [13] estimated optical flow fields on cube
faces extended by boundaries projected from adjacent faces,
and interpolated intermediate frames using view morphing.
As the interpolation only involves blending, they achieved
real-time navigation using GPU. The above two methods are
rather simple, but they may suffer severe visual artifacts. There
existed several works following the matching-triangulation-in-
terpolation procedure [7], [10], yet with detailed approaches
different from ours. Yeung [7] segmented panoramas into
regions, and established region correspondences. After triangu-
lating the regions individually, special schemes are employed to
get equal-sized triangular meshes in matched regions. Finally,
hardware texture mapping [6] is applied to do interpolation.
Zhang et al. [10] proposed a three-step triangulation method,
in which the central regions of cube faces are first triangulated,
then the meshes of the horizontal four faces are connected,
and finally the regions surrounding up and down faces are pro-
cessed. A new view is synthesized by performing face-to-face
homography transformation [14], with the cube face disconti-
nuity considered. Their method gets better interpolation results,
however, is rather complicated for real-time navigation. Our

Fig. 1. The world point gives a point correspondence, and . However,
based on the geometric error, wrong candidate matches close to the epipolar
plane (in light red color) may be mistaken for inliers, for example which
is antipodal to . Our angular error metric can remove such outliers with ab-
normal angular offsets.

method, on the other hand, can circumvent the cube disconti-
nuity problem effectively, and achieve real-time navigation.
Based on the panorama collections, there are also works gen-

erating limited field-of-view videos for navigation purpose. For
instance, Chen et al. [25] automatically varied the speed and
field of view of the video to highlight turns and landmarks. Their
method selects frames, without interpolation, from a sequence
of panoramas captured at close intervals. Peng et al. [26] only
considered a view facing the heading direction and simu-
lated moving forward simply by the zoom-in effect. In our work,
we can synthesize a panoramic video.

III. INTERPOLATION OF CUBIC PANORAMAS

We now present how to synthesize an arbitrary view between
two cubic panoramas.

A. Finding Reliable Correspondences

We begin with the description of epipolar geometry for the
sphere [27]. For one world point , an epipolar plane is given
by and two camera centers , (illustrated in Fig. 1). The
epipolar constraint requires the corresponding image points
and lie on this plane, i.e., satisfying the condition

(1)

where is the fundamental matrix that can be decomposed as
a combination of camera motion and calibration matrices.
After extracting feature points on cubic panoramas via SIFT

[28], we estimate using the eight-point algorithm [29], and
eliminate correspondence outliers by the RANSAC framework
[30]. In the RANSAC iteration, we should determine whether
a match is complied with current . This is often realized by
evaluating the geometric error metric [29], given by

(2)

where is the normal-2 distance. The geometric error is
effective to remove outliers departing from the epipolar plane,
but may fail when the wrong candidate matches lie on or close
to the epipolar plane. For example, in Fig. 1 is antipodal
to . In case that is close to zero, is small, and
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Fig. 2. Correspondence outliers removed by our angular error metric.
(a) shows two correspondence outliers with small distances in geometric
error, with blowups displayed in (c) and (d). (b) plots the angle distribution.
The peaks marked with circles correspond to the two outliers, respectively.

then will be wrongly accepted as an inlier. We found this
problem is not seldom in our application, and may cause serious
overlaps in the followed triangulation process.
To deal with this problem, we introduce an angular error

metric under the assumption that the angels between different
correspondence pairs are close. To avoid complicated reprojec-
tion computation, we define the angle between correspondences
in a simplified way. As shown in Fig. 1, we translate into
the second panorama sphere (see the red dot), and calculate the
angle (denoted as ) between the resulting and its possible
match . The angular error metric is defined as the extend of
how the angle departs from the main angle distribution, given
by

(3)

where and are the mean and standard deviation of the an-
gles between the correspondences in the consensus set deter-
mined by the geometric error. We empirically set the threshold
for the angular error to be 0.95. One real example is shown in
Fig. 2. From our experiments, we found that the angular error
metric is applicable for both indoor and street-level panorama
sequences.

B. Triangulating Panoramas

Unlike the work of Zhang et al. [10], which adopts different
triangulation schemes for face central regions and boundaries,
we do triangulation in a unified way. Specifically, since the fea-
ture points have been projected on the sphere, triangulating a
panorama can be done by applying convex hull triangulation
algorithm [31]. As a sphere is completely symmetric around the
center, there is no discontinuity problem when triangulating the
sphere, and hence the cube face discontinuity can be naturally
ignored.
Given two neighboring panoramas, we perform triangulation

on the first sphere and apply the mesh connectivity to the second
sphere. Due to moving objects/cameras and/or mismatched
points, the triangular mesh on the second panorama may have
overlaps inside. For instance, in Fig. 3(a) and 3(b), the feature

Fig. 3. Triangulating panoramas: (a) The triangulation results for two neigh-
boring panoramas. The overlap on the second panorama is indicated as the
crimson region. (b) The triangular meshes of the overlapped regions. (c) The
meshes after the rematching.

points in the red colored regions are correctly matched, how-
ever, the moving car with relatively large disparity results in an
overlap in the second sphere.
To solve such overlaps, we first conduct checking of the

topology consistency, which requires no triangle intersection
in the second triangular mesh. Specifically, we begin with one
triangle in the second mesh and include it in the matched region.
We then check whether a new triangle, adjacent to the matched
triangles, arises intersections. If an intersection occurs, the new
triangle is rejected as unmatched. This checking process sepa-
rates the triangular mesh into matched regions and unmatched
regions. Next, we rematch the unmatched regions. Since the
unmatched region is a curved surface, for which the convex hull
triangulation is not applicable, we project the boundary of each
unmatched region to a 2D plane using gnomonic projection,
and perform 2D edge constrained Delaunay triangulation [14]
as in Fig. 3(c).
The checking-and-rematching process continues until there

is no unmatched regions or the unmatched regions remain un-
changed. We found the later case occurs when the unmatched
region on the first sphere have convex boundary, while the cor-
responding region on the second sphere have concave boundary.
Therefore, we use a ping-pong technique. That is, we first do
the rematching on the first sphere, and check the topology con-
sistency for the second one. If there still exist unmatched re-
gions, we do the rematching on the second sphere, and check
the topology consistency for the first one. This process is fast
to converge, which usually needs no more than 5 iterations,
and after this process there are rarely unmatched regions in our
experiments.

C. Generating A Novel View

After the panoramas are triangulated, we develop a tri-
angle-based scheme for the novel view generation. It contains
three steps: 1) determining the destination triangular mesh
of the novel view; 2) computing a triangle-to-triangle ho-
mography-based transformation between a pair of source and
destination triangles; 3) synthesizing the destination triangles
by the backward warping. Since all the triangles are operated in
the spherical domain, we need not to differentiate the triangles
that cover more than one cube face as Zhang et al. did [10].
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Fig. 4. Setting up of the virtual camera for , with the coordinate system
specified by . See text for more details.

1) Determining the Destination Triangular Mesh: To deter-
mine a destination triangle, we only need to compute the coordi-
nates of its vertices. Given a pair of correspondences, and ,
we first recover the corresponding 3D scene point using linear
triangulation [29], then reproject to the novel view based on
the view’s position and orientation , giving the repro-
jected vertex as

(4)

and can be computed via (13) and (14) respectively.
Thanks to the gnomonic projection associated with the cubic
panorama, we can no longer differentiate a spherical triangle
and its projective counterpart against the sphere center. Without
introducing ambiguity, wemainly refer to the projective triangle
in the following discussion.
2) Triangle-to-triangle Homography Transformation: Given

one triangle as shown in Fig. 4, we set up a virtual
camera located at the sphere center, with the image plane de-

fined by the projective triangle . Here, we choose
to be the x-axis of the image plane . The local homogeneous
coordinates of vertices , , in the image plane can be ex-
pressed as

(5)

where is the angle between edges and .
For the virtual camera, the line passing through the sphere

center , with the direction perpendicular to the image plane de-
fines the principal axis . The intersection point is the principal
point, specifying the camera calibration matrix as follows,

(6)

where is the focal length; , are 2D offsets of principal
point in the image plane. The camera orientation respective to
the sphere is given by

(7)

Fig. 5. Enforce the position constraint that requires the transformed point co-
incide with the original point. (a) The triangles transformed using (in red
color) may not coincide with the triangles of the first reference panorama (in
blue color). (b) Interpolated result using as the warping matrix. (c) Interpo-
lated result using as the warping matrix.

where is the direction of the positive x-axis in the image plane
; . By taking the global position and rota-
tion information for the sphere into account, we have the
final camera matrix given by

(8)

For a pair of source (e.g., on the first panorama) and destina-
tion triangles, we first set up the virtual camera for each triangle,
and get their 2D local coordinates and camera matrices using (5)
and (8). We then compute the homography matrix based on
three point correspondences and two camera matrices

, i.e.,

(9)

Details about the computation can be found in [14], [29].
The above transformation is physically plausible, however,

it is affected by small reconstruction errors in recovering 3D
scene points, which is an over-determined problem. This will
make (see Fig. 5(a)), and may lead to blurring in
the interpolated results (see Fig. 5(b)). To tackle this problem,
we enforce the position constraint that requires the transformed
point coincide with the original point. Specifically, we get an
intermediate point , and compute an affine matrix

from the new point correspondences , i.e.,

(10)

The final warping matrix is computed as

(11)

As shown in Fig. 5(c), the refined homography transformation
can improve the interpolation quality.
3) Synthesizing the Interpolated Panorama: To generate the

interpolated cubic panorama, the backward warping is used. For
every pixel on the novel view, we find its corresponding pixels
on the two reference panoramas by means of estimated warping
matrices, and do color blending.
Note that the warping matrices are specified for the triangles

defined in a local image system. Given a pixel on the novel view,
we should convert its 3D coordinates defined in the panorama’s
camera system to 2D coordinates defined in the local image
system. Without loss of generality, suppose that pixel falls
inside . We can compute its barycentric coordinates

according to its 3D coordinate and the triangle
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Fig. 6. The data structures used in the triangle-detecting operation. (a) An ex-
ample triangular mesh. (b) The adjacency table for the mesh in (a). (c) A part
of the index map of triangles which the pixels fall inside, and the preceding
pixels are colored yellow. By using the index map and the adjacency table, the
triangle-detecting operation can be accelerated.

vertices . Then the local 2D coordinates of
pixel can be represented as .
These two steps can be substituted by matrix multiplications,
i.e.,

(12)

After getting , the warping matrices can be used to find the
corresponding pixels in the local image system of the triangles
on the reference panoramas. An inverse procedure is performed
to get 3D coordinates of the correspondences for texture lookup.
In the above procedure, we need to determine which triangle

pixel falls inside. The triangle-detecting operation is con-
ducted for all the pixels. For speed up, we utilize both the neigh-
boring triangle-detecting information for the pixels, which is
stored as an indexmap, and the adjacency table for the triangular
mesh that records for each triangle a list of adjacent triangles.
Fig. 6 demonstrates an example. When rendering a pixel , we
first check the triangles which its previously proceeded neigh-
borhood pixels fall inside, for instance, triangles 3, 4 for
pixel . If the check fails, for example for pixel , we then
take the adjacent triangles, saying triangles adjacent
to triangle 5, as the checking set. If both steps fail, we finally
take all the remaining triangles as the checking set. Also note
almost all the triangle-detecting operations can be determined
using the first two steps. This hierarchical scheme can speed up
the triangle-detecting operation significantly, e.g., from 130.507
seconds without the speedup to 8.305 seconds, for a triangular
mesh with 950 triangles and a cubic face resolution of 512
512 pixels.

IV. PANORAMAS TO VIDEO

We now describe how to synthesize a smooth video sequence
from sparsely-collected reference panoramas. Intuitively, a se-
ries of novel viewpoints are to be interpolated between pairs
of reference panoramas. Suppose two neighboring panoramas
have positions given by 3D vectors and , and orientations
given by 3 3 rotation matrices and . We linearly inter-
polate the position as

(13)

Fig. 7. Interpolating the panoramas by simply projecting the scene points
causes temporal shaking in the generated video. The blue curve shows
the position track of one reprojected scene point using (4), interpolated at

and enclosed by two reference panoramas. We compute
two compensation matrices and that transform the reprojected feature
points (the gray curve) to make the video more smooth (see the red curve).
Please note in order to illustrate the tracks more clearly, the figure only shows
the view of x-y plane.

where is the interpolation variable. The orientation in-
terpolation is accomplished using spherical linear interpolation
of quaternion (Slerp), i.e.,

(14)

where , and are quaternions corresponding to rotation
matrices , and , and . After the novel
viewpoints are determined, we can synthesize a video using the
proposed algorithm in Section III.
However, we found there may exist temporal shaking be-

tween the interpolated frames and the original panoramas. We
investigate this problem by analyzing the position track of fea-
ture points. As shown in Fig. 7, the 9 interpolated positions
at together with the positions in the refer-
ence panoramas, and , form the blue curve, where the po-
sitions are spherical coordinates on the unit sphere. Apparent
changes occur between the first (last) two points on the curve,
although the changes are rather small in absolute values. We
also interpolated two panoramas at using (4), yielding
gray points and . As we can see, the reprojected positions
and deviate from the original positions and , while

they together with the 9 interpolated positions compose the gray
curve, which is smooth. Hence, this shaking problem is mainly
caused by estimation errors in the reconstruction of 3D scene
points.
We handle the shaking problem by transforming the gray

curve to make its starting and end point coincide with and
, respectively. This can be achieved by computing two com-

pensation matrices which satisfy

(15)

based on three correspondences and in tri-
angles. Then, like (13) we linearly interpolate the compensation
transformation as

(16)

and apply it to the reprojected positions. The newly generated
red curve is used as the position track of the feature point, based
on which the warping matrix will be estimated. For the example
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Fig. 8. The generated results for the “Reading-room” panorama sequence using our method. (a) Results interpolated from frame 1 to 2; (b) Results interpolated
from frame 31 to 32.

Fig. 9. The generated results for the Google Street View c data in Hong Kong using our method. (a) Reference panorama at frame 58, (b) and (c) are the generated
results. The average distance between the reference panoramas is about 25 meters. As shown, the interpolated results are reasonable, though with some blurry
artifacts.

shown in Fig. 8(a), we count the average error between the re-
projected points in image space with and without compensa-
tion, which is about 21.6 pixels for a cube face size 512 512.
As the shaking phenomenon is apparent only in video playing,
readers are referred to the accompanying video for the visual
comparison.

V. IMPLEMENTATION DETAILS

In the implementation, we separate the algorithm into a pre-
processing stage, which includes the matching and triangula-
tion, and an on-the-fly stage that is the novel-view generation.
Note that all the three steps in the novel view generation are to
be performed for every individual primitive (triangles or pixels).
Hence, they are highly parallelizable, and we can improve the
timing performance by utilizing the GPU’s parallel computing
power. Specifically, one CUDA pass computes the triangular
mesh on the novel view, the warping matrices, and the compen-
sation matrices. Another CUDA pass is taken for novel view
synthesis, in which the multiple transformations, including the

warping matrices and the coordinate mappings, can be accom-
plished easily by means of matrix multiplications. After that,
the generated panorama is used for environment mapping in a
DirectX rendering pass, and interactions such as zooming, pan-
ning, rotation are provided.
Note the triangle-detecting speed-up process introduced in

SectionIII_c3 is not compatible with GPU processing, because
of the irregular size of the adjacency table. Alternatively, we de-
velop a GPU-based strategy to acquire the triangle index map.
Since every triangle in the interpolated panorama has only one
corresponding triangle in the reference panorama, the pixels
within one destination triangle will share the same reference
triangle’s index. This reminds us of the hardware rasterization
ability which can flat fill triangles with single colors. In the im-
plementation, we add two passes to the pipeline. One general
computing pass is to assemble the destination vertices to triangle
elements with the color indicating the reference triangle’s index,
after the first CUDA pass. To use flat-filling capability, the ver-
tices shared by different triangles are repeated, so that each
vertex will have the correct triangle index. Since the cubemap
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is hardware supported, a rendering pass is then carried out to
render the destination triangular mesh to the cubemap, gener-
ating the triangle index map.

VI. EXPERIMENTS AND DISCUSSION

In this section, we evaluate our approach using different
panoramas and make comparisons with existing techniques,
then talk about the timing performance of our system, finally
discuss our limitations.

A. Experimental Results

1) Results for Indoor and Street-Level Imageries: In thefirst
experiment, we tested on an indoor panorama sequence, which
was capturedusing theLadybug2cameramountedon amanually
movable platform. The sequence contains 33 frames, separated
with small distances (roughly about 0.7meter) and slight camera
rotation. Fig. 8 displays interpolation results at and
0.75 between two pairs of neighboring panoramas. As Fig. 8(a)
shows, the scene is well interpolated, with a tendency to move
rightward. In Fig. 8(b), we can notice the lamp near the column
becomes dark gradually. We also compose a video clip by in-
terpolating 9 frames between pairs of adjacent panoramas (see
the accompanying supplementary video). As the scene is static
and the camera motion is relative small, the generated clip looks
pleasing and temporally smooth to mimic walking navigation.
In the second experiment, we tested on street-level panoramas

fromGoogle Street View, which are taken from panoramic cam-
eras mounted on specially adapted cars. There are many moving
objects in the images and the displacement between adjacent
panoramas is large, about 25 meters in our example. Fig. 9
shows two interpolated sequences at . Be-
cause of the large depth range and moving objects in the outdoor
scene, the occlusion phenomenon is more serious than that in
the “Reading-room” indoor scene. Although our triangulation
process can handle the occlusion to some extend, we may miss
some cases. Despite this, as can be seen in Fig. 9 and the sup-
plementary video, our method can still get reasonable results for
these sparsely collected imageries.
2) Comparison BetweenDifferentMethods: We compare our

method with three recent approaches, i.e., [9], [13] and [10]. In
experiments, we implemented the first two methods, while due
to the lack of technical details, we used the results from [10].
In Fig. 10, 10 (a), 10 (b) and the first row in 10 (c) are the
panoramas captured in the laboratory of University of Ottawa
with the camera moving forward. They are spaced with a dis-
tance of 1 meter. The first row in Fig. 10 (c), which is captured
between Figs. 10(a)–10(b), is used as the ground truth.
The third row in Fig. 10(c) is the result reported in [9] (note

that this method uses four surrounding cubes as input views).
We can see the result suffer from visible errors in the ceiling
and the left wall shown in Figs. 10(d)–10(e), respectively. It
is because the method adopts a pixel-based interpolation that
is sensitive to the errors in estimated depths and color differ-
ences, and is difficult to guarantee the color smoothness over
the entire image. The fourth row in Fig. 10(c) is the result gen-
erated by the method of [13]. Since this method is based on op-
tical flow estimation, the results may have many artifacts when
the displacement is relatively large. The result at the last row in
Fig. 10(c), which was provided by the authors of [10], is better

Fig. 10. Comparison between different methods. (a) and (b) are the reference
panoramas; (c), (d), (e) Starting from the second row are the ground truth, our
result, and those from [9], [13] and [10] at , respectively. Obviously,
our method generates a more pleasing result, and more visually similar to the
ground truth.

than previous two results. However, it still has apparent arti-
facts in the ceiling region (see Fig. 10(e)). What’s more, be-
cause this method triangulates the cubic panorama in form of
the cube, there are black lines between cube faces in the result
(see Fig. 10(d)). Thanks to the triangulation on the unit sphere
and the triangle-to-triangle homography-based transformation,
our method can generate results with less artifacts (the second
row in Fig. 10(c)), and is best of the four methods.
Next, we carry out objective evaluations in Table I and II

by employing the PSNR and structural similarity index (SSIM)
[32] measurement. Besides the example in Fig. 10 (referred as
“Ottawa”), we captured another two scenes (with a capturing
distance of 0.5 meter) for comparison, which we refered as “SE
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TABLE I
PSNR COMPARISON

TABLE II
SSIM COMPARISON

Fig. 11. Snapshots of the video navigation provided by Google Street View
(the first row) and our method (the second row). Since we do not know the
exact viewing parameters of Google Street View, there exist some differences
between the fields of view.

Lab” and “MTS Lab”. Due to space limitations, the visual re-
sults are not presented here. From the tables, we can see that our
results have relatively higher PSNR values and SSIM scores. It
is also noted that although the result from Zhang et al. [10] has
only slightly lower scores than ours, it has severe artifacts in vi-
sual appearance.
3) Our Method V.s. Google Street View: We now make a

comparison with Google Street View navigation service for the
aforementioned Google Street-level imageries. In the Google
Street View service, the hopping navigation is to jump from one
panorama to another, in which a zooming cross-fading effect
and other visual cues are made to give the user a sense of move-
ment. However, the transition is over-blurred and has ghosting
effects (see the first row in Fig. 11), and it is not that easy to
distinguish the scene objects in those intermediate frames. On
the contrary, the video navigation provided by our method (the
second row in Fig. 11) makes view interpolation between adja-
cent panoramas and gives a more pleasing viewing experience.
What’s more, our video navigation can provide a more flexible
control. Users can change the view direction when moving from

Fig. 12. Running time with the increasing number of triangles and panorama
resolutions. The logarithmic scaling is used for the time axis due to the large
value range.

one panorama to the adjacent one, which is not supported by
Google Street View. Both the side-by-side comparison and flex-
ible navigation control can be found in the supplementary video.
A close inspection to Fig. 11 and the video reveals that our

method still suffers from some artifacts. This is due to two rea-
sons. First, the street-level scene contains buildings with sym-
metric structures or repetitive elements,making it difficult tofind
correct matches. Second,moving objects on the street may cause
large overlaps. Interestingly, although there are artifacts, our syn-
thesized video still looks more temporally smooth in a global
sense than the transition effect in Google Street View. This en-
courages us that the video navigation is a useful and promising
control to current panorama-based navigation systems.

B. Timing Performance

Our system is built on a PC installed with Intel(R) Core(TM)
i7–2600CPU@3.40GHzandNVIDIAGeForceGT530.For the
preprocessing stage implemented on CPU, we report the timing
statistics for one typical case. It usually takes about 3 seconds
to find reliable correspondences from two reference panoramas
with a face size of 256 256, and about 16 seconds for the tri-
angulation procedure, when there are about 950 triangles. The
timing will grow with the increase of the panorama’s resolution,
the number of feature points, and/or the number of triangles.
For the online stage, we collect the timing statistics by ac-

counting two major factors, i.e., the number of triangles and the
face resolution of cubic panoramas. As shown in Fig. 12, the
timing curves are almost flat against the increase of the triangle
number, and grow with the increase of the cube face resolution.
For our CPU implementation, it takes about 8.305 seconds to
generate a cubic panorama with a face size of 512 512 pixels.
Our GPU implementation only needs 0.0172 seconds (58 fps).
The speed up is about 480 times. It is obvious that our GPU im-
plementation successfully achieves a real-time performance.
We now report the timing performance of previous methods.

For the method of [13], which is based on optical flow, it can
achieve interpolation at about 463 fps for cubic panoramas with
a face size of 512 512. However, its quality is less satisfactory,
as discussed previously. For the method of [9], our implemen-
tation takes about 239.47 seconds to generate a cubic panorama
with a face size of 512 512 pixels. For the method of [10],
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Fig. 13. Comparison between different feature detectors. (a) SIFT[28];
(b) SURF[33]; and (c) BRISK[34].

it took several minutes for the interpolation step, which was re-
ported by the authors, while their machine is slightly slower than
ours.

C. Discussion

In our experiments, we find that the interpolation quality is re-
lated to the accuracy of correspondences, which is always chal-
lengeable. We also find several situations in which to get cor-
rect corresponding matches using SIFT will be quite difficult.
For instance, there are many objects with self-similar structures;
the panorama is covered by too many trees; or the change of
the depth range in the pair of panoramas is too large. However,
the comparison between several state-of-the-art feature detec-
tors tells us that SIFT gets better interpolation results, as Fig. 13
shows. Hence, it is one of our future work that investigates more
advanced feature detectors.
Secondly, although the rematching in the triangulation can

solve most of overlaps, it sometimes mistakenly discard cor-
rect matches, which will cause blurry artifacts in the interpo-
lated panoramas. One possible solution is to discard all the fea-
ture points covered by the unmatched regions and retriangulate
the panoramas. This, however, may reduce the number of the
feature points significantly. One issue that we do not tackle in
this paper is the visibility between triangles [11]. Interestingly,
we have not observed the visibility problem in our experiments.
This may be because the detected feature correspondences are
rather sparse.
Currently, when we generate the video, we interpolate the

same number of panoramas between each pair of reference im-
ages. This may result in varying paces when watching the video.
The problem can be alleviated by taking the real physical dis-
tance between reference images into account, and adjusting the
number of interpolated frames adaptively.

VII. CONCLUSION

In this paper, we present a novel algorithm, namely
Cube2Video, to provide users a video-viewing experience
when navigating cubic panoramas on-the-fly. Different from
existing methods, we tackle the challenging discontinuity
problem in cubic panoramas in an easy and unified way.
Since the cube is a projective representation of the sphere,
we extend the matching-triangulation-interpolation procedure

on the spherical domain. A new angular error is proposed to
improve the matching accuracy. After triangulating on the unit
sphere, we construct a virtual camera model and develop a
triangle-to-triangle transformation scheme for the interpolation.
The temporal smoothness of the synthesized video is improved
via introducing a compensation transformation. In addition, we
exploit the cubemap hardware support and the parallel com-
puting power of GPU, thus achieving real-time video viewing.
Experiments show that our method can get pleasant results,
even for panoramas with large displacements.
Our system can be further improved in several ways. Firstly,

line correspondences [35] can be included to further improve the
accuracy of the feature correspondences. Such information may
also serve as constraints and guide the triangulation procedure.
Secondly, accounting the physical distances between panoramas
may help us to obtain a more flexible control of the video navi-
gation pace.
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