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Abstract 
In this paper, we present an improved synthesis 

algorithm for both 2D and solid textures. Based on the 
wavelet-based multi-resolution pyramids and the 
improved optimization of texture synthesis, a coarse 
texture was synthesized as a skeleton. By adding detail 
information to the coarse texture, the higher resolution 
results can be generated. This skeletal growth-like 
procedure makes the result more controllable. In 
addition, to make full use of the spatial relationships 
among texture pixels, wavelet coefficients rather than 
traditional RGB channels are used to search the nearest 
neighbor pixels. Experimental study shows that the 
method plays well for both 2D and solid texture 
synthesis. 
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1. Introduction 

Texture synthesis has been widely recognized as an 
important research topic in computer graphics, vision, 
and image processing. There has been a lot of research 
which was tried to generate textures either to validate 
texture models or simply to use the result in an 
application. 

Compared with other research, exemplar-based 
methods, which synthesize a large texture from a small 
exemplar, is an excellent solution. During the last decade 
many example-based texture synthesis methods have 
been proposed. Texture synthesis techniques could be 
broadly categorized into parametric [6][13], and 
nonparametric methods. The nonparametric methods 
could further be classified into pixel-based methods [2] 
[4][15], patch-based methods [3][9], optimization-based 
methods[8], and appearance-space texture synthesis [11]. 

In this paper, our goal is to present an optimization 
texture synthesis method based on wavelet transform, 
which is accumulation error free. Furthermore, we focus 
on an improved framework for both 2D and solid texture. 
Our contributions include two main components: the first 
component is a framework that effectively synthesizes 

texture using wavelet technology; the other one consists 
of an improved optimization texture synthesis algorithm. 
The key advantages of the improved optimization texture 
synthesis algorithm are quality and speed. For better 
wavelet coefficients metric, the quality of the 
synthesized textures is equal to or better than those 
generated by previous techniques; meanwhile, the 
computation speed is much faster than the prior ones 
because of the reducible iterative synthesis times. 

2. Related works 

Texture synthesis seeks to generate textures of 
arbitrary size from a given smaller texture sample. 
Example-based optimization approach is one of the most 
important methods to synthesize texture in the recent 
decades. Most notable Heeger and Bergen[6] iteratively 
resampled random noise to coerce it into having 
particular multiresolution oriented energy histograms. De 
Bonet [2] measured the joint occurrence of texture 
discrimination features at multiple resolutions and 
conditions of the similar joint occurrence of features at 
lower spatial frequencies, but it can produce boundary 
artifacts if the input texture is not tileable. Wei and 
Levoy [15] adopted the algorithm to include multi-
resolution synthesis. Using Gaussian pyramids they 
decomposed the texture image into different resolutions 
and seeked to transform a random noise sample to 
resemble the sample texture at each resolution using an 
Efros style neighborhood searching approach. This 
method works well on stochastic (random) textures but is 
not suitable for structured textures. Johannes Kopf [7] 
used 2D texture optimization techniques together with 
histogram-matching to synthesize solids. It is applicable 
to a wider variety of textures, but the running time is its 
main problem. 

The speed issue has been addressed by parallel GPU 
texture synthesis [10][11] which runs much faster than 
CPU-based algorithms. A further advantage of GPU 
synthesis is the reduced storage; this is very important 
for real-time applications as a commodity GPU often has 
limited texture memory. 

Although wavelet transform was first introduced in 
computer graphics, it has become an important tool in 
both graphics and image processing applications. In 
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Figure 1: Traditional multi-resolution pyramids method (left) and skeletal texture synthesis method (right). In 
traditional method, process (A) getting input pyramids with down sampling method, process (B) synthesizing 
texture, which must be done at every resolution pyramid, process(C) getting feature information from lower-
resolution texture. In texture skeletal method, process (D) getting input pyramids with multi-level wavelet 
transform, process (E) synthesizing texture, which is optional, process(F) reconstructing output pyramids by 
adding detail information to texture skeleton. It deserves to be specially noted that the high frequency coefficient 
could be negative value, for better display, this will be shown in gray scale images. 
 

 
particular, some authors have used wavelet transform for 
texture synthesis and analysis. Portilla [13] proposed a 
statistical model for texture representation using a 
complete complex wavelet transform. Joseph [1] 
synthesized textures by constructing multi-scale wavelet 
transform tree. But these methods are all based on 
statistical simulation of wavelet coefficients and have 
limitations for synthesizing structural textures. Gallagher 
and Kokaram [5] introduced wavelet-based multi-
resolution pyramids. Given an initial sample texture, the 
algorithm generates new texture using a nonparametric 
technique that incorporates the Dual Tree Complex 
Wavelet Transform (DT-CWT). But this strategy only 
works on pixel-based texture synthesis method. Tonietto 
[14] used wavelet coefficients as metric to select nearest 
patches, which improved the synthesis quality to a 
certain extent. But this improved patch-based method 
also leads to errors accumulating. 

3. Skeletal Framework 

This section describes the framework of skeletal 
texture synthesis algorithm. Fig.1 left show the 
traditional multi-resolution method. The traditional 
method first synthesizes the texture at a coarse 
resolution, and then up-sample it to a higher resolution 
via interpolation. This serves as the initialization of the 
texture at the higher resolution. Also, within each 
resolution level, the method must run the synthesis 
algorithm repetitively.  

Compared with the traditional one, the right part in 
Fig.1 indicates the skeletal texture synthesis framework. 
More precisely a wavelet decomposition of the initial 
image is computed. Optimization synthesis starts from a 
coarse level. Each pixel at this coarse level corresponds 
to a small patch at the finer level. To synthesize a finer 
result, details are added to the coarse one. This process is 

visually similar to skeletal growing from small to large. 
We summarize the algorithms in the following 
pseudocode. 

 
Algorithm 1: SKELETALTEXTURESYNTHESIS(E) 
 

 
 

The proposed method uses wavelet transform to deal 
with the input exemplar E . In the decomposition 
scheme, we get ( )MaxLevelGin as the real input texture 

and inC as detail information. With texture skeleton rE , 

a low-resolution intermediate texture ( )MaxLevelGout  
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was synthesized. ( )MaxLevelGout  provides smooth 
information and the skeleton for the objects in the image. 

Using ( )MaxLevelGout  and inC , we can 

reconstruct outG . 
 

 
Figure 2: 2D texture recostruction process. 

 
Fig.2 shows the reconstruction process. For each 

pixel p  in ( )MaxLevelGout , we record the position 

where it comes from in rE  and its corresponding detail 

information 1C , 2C  and 3C . 1C , 2C  and 3C  are all 
wavelet coefficients. With the detail information, we get 
the final high-resolution texture I  by inverse Haar 

wavelet transform. Every pixel in the ( )1+iGout  

evolves to four pixels in ( )iGout . 
Similar to 2D texture reconstruction, the high-

resolution target solid S  can be synthesized with detail 
information H  and low-resolution 

solid ( )MaxLevelSout . We hold H  in three directions 

for voxels of ( )MaxLevelSout . But the high-level solid 
voxels and the detail information are not one-to-one. In 
other words, some voxels in S  could not be generated 
using the detail information directly. For those "missing" 
voxels, we adopt a strategy as follows: assuming that we 
want to synthesize a 128128128 ××  solid, for every 
one of the three directions, using the proposed 2D texture 
reconstruction, we can get 64 slices whose dimensions 
are 128128 × .We mix the slices of the three directions 
to get the target. For every direction, each slice toward 
this direction is used twice in succession, since with 
inverse Haar wavelet transform, every voxel should map 
to two for each direction. Then voxel is synthesized by 
mixing the values in the three directions. 

4. Improved Optimization Texture Synthesis 

Optimization-based texture synthesis could be 
summarize as follows. First, initialize the pixel values of 
output image I randomly chosen from exemplar E . 
Then, the goal is to iteratively increase the similarity 
between E and I . Every iterative step tries to minimize 
the energy function[12] which measures the difference 
between E and I . 

 
( )( ) { }( )∑=

t
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globalE
 is the total energy of I compared with E , 

{ }( )eID t ,  is the minimum distance between certain 
neighborhood and all possible neighborhoods from E . 

There are two main phases in the iterative process: 
optimization and search. In the optimization phase, the 
texel value of I is changed based on the search results. 
For each pixel p , we calculate its values by weighted 
average of all the neighborhoods including pixel p . In 
the search phase, the goal is to optimize Eq.(1) by 
finding the best matching in E  for every neighborhood 

tI . The new neighbor index is held in an array to be 
used for the optimization phase. This is a standard 
nearest neighbor search in a high-dimensional space, and 
it determines the running time of the method. 

The critical part of the texture synthesis algorithm is 
nearest patch searching. The former techniques usually 
apply RGB, specular, shininess or displacement channels 
to compare patches and build a list of candidate patches 
which satisfy an error criterion. It searches the input 
image for all possible patches, and picks the patch with 
smallest distance as the nearest one. The distance is 
computed for the patches as follows: 
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Where A  is the number of pixels in the patch, 

and
n
It

p
 represents the value of the n-th pixel in the 

neighborhood tI . The pixel's values can be either 
grayscale or RGB triplets. 

In our method, the criterion to compute the 
neighborhoods' distance was replaced by wavelet-based 
one, since the wavelet transform has nice localization 
properties in both the spatial and the frequency domains. 
To compute the distance between two neighborhoods, 
wavelet coefficients are selected as target channels. 
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Where A  is the number of pixels in a patch, and 
n
It

c
 represent the values of the n-th wavelet coefficient in 

the neighborhood tI . 
 

 
Figure 3: Comparisons between our method and 
Gallagher’s. 
 
 
Through wavelet transform the high-frequency 

coefficients hC  (detail coefficients) can represent 
spatially local phenomena such as edges. While we all 
know that the human visual system is very sensitive to 
edges, corners etc, this makes this criterion more suitable 
for textures containing regular noticeable features. Our 
results also showed that this criterion can get rather 
better neighborhood matching. 

5. Results 

We implement the proposed approach by using C# 
language on a PC with a 2.8GHz CPU and 1GB RAM. 
Fig.3 shows comparison between our method and 
Gallagher's. Fig.6 shows some representative results. 
Some solids synthesized by our method are effortlessly 
mapped on a variety of 3D objects with non-trivial 
geometry and topology.  

The results show that our method can apply to most 
kinds of exemplars. For the low-resolution synthesis 
process, there are two ways that could be used to 
speedup the searching process. First, the low resolution 

exemplar rE replace the original one E , that is, the 
smaller exemplar, the smaller searching space. Second, 

the feature of texture in rE is similar to, but smaller than 
that in E , smaller neighborhoods should be used in the 
searching process. Thus, less number of pixels will be 
calculated. We benefit from it not only speeding up the 
synthesis process, but also making our method more fit 
for texture containing large scale structures. 

 

 
Figure 4: Time comparison of our method with 1 
level wavelet transform and Kwatra’s method for 2D 
texture synthesis. The exemplars are 128 × 128, 
and the neighborhood is 13 × 13. 
 
 
 

 
Figure 5: Time comparison of our method with 1 
level wavelet transform and Kopf’s method for solid 
texture synthesis. The exemplars are 128×128, and 
the neighborhood is 13 × 13. 

 
In our experiments we use one level wavelet 

transform. The synthesis time depends on size of input 
texture, the output and the size of the neighborhood. 
Fig.4 and Fig.5 show the time comparison between our 
method with one level wavelet transform and the former 
ones without wavelet. From these time curves, our 
method reduces the time cost greatly, especially when 
the output is large. To get a solid large enough to contain 
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the object, Kopf's method [7] has to synthesize a set of 
Wang cubes to get the result solid. This strategy usually 
brings repeated texture in the surface of the object. For 
the time cost reduction, our method can get solid large 
enough to contain the object in acceptable time. 
 

6. Conclusions and future work 

This section describes the framework of skeletal 
texture synthesis algorithm. Fig.1 left show the 
traditional multiresolution method. The traditional 
method first synthesizes the texture at a coarse resolution, 
and then up-sample it to a higher resolution via 
interpolation. This serves as the initialization of the 
texture at the higher resolution. Also, within each 
resolution level, the method must run the synthesis 
algorithm repetitively.  

In this paper, we proposed wavelet-based framework 
for the exemplar-based texture synthesis algorithm. We 
have successfully applied texture skeleton synthesis 
method to improve the former algorithm. Our method 
tries to deal with exemplar from a different angle, we can 
get additional information about pixels' spatial 
relationships. An exemplar does not have only RGB, 
specular, shininess or displacement, but also wavelet 
coefficient. By wavelet transform the texture has nice 
localization properties in both the spatial and the 
frequency domains. With the former method, high-
dimensional vectors make the algorithm too slow; to 
solve this problem we have different path. First, we use 
some algorithms to reduce the dimension, for example 
PCA, but this needs extra time; Second, select effective 
channels to integrate redundancy channel, without 
additional time cost. Furthermore, we are excited about 
the possibilities of using the method on both 2D and 3D 
texture synthesis. 

Interesting directions for future research include 
further improving the quality and the speed of synthesis. 
For example, we plan to further optimize the overlap 
area between the contiguous neighborhoods. We also 
plan to use GPU to further accelerate the method. 
Another promising and important direction is to develop 
a parallel algorithm. 
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Figure 6: Texture synthesis results by our method with 1 level wavelet transform. The exemplars 
and corresponding results are listed as (a)flower pattern, (b)brick, (c)leaf, (d)animal 
skin,(e)peanut, (f) RGan cool. (g) to (i) in the third line are solid cube textures, (j) to (l) in the 
fourth line are corresponding solid textures carved by Stanford bunny. 
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