

Skeletal Texture Synthesis

Pan Gang, Zhang Jiawan, Zhou Xiaozhou, Sun Jizhou
Tianjin University, Tianjin University, University of Alberta, Tianjin University

{pangang@tju.edu.cn, jwzhang@tju.edu.cn, xzhou3@cs.ualberta.ca, jzsun@tju.edu.cn}

Abstract
In this paper, we present an improved synthesis

algorithm for both 2D and solid textures. Based on the
wavelet-based multi-resolution pyramids and the
improved optimization of texture synthesis, a coarse
texture was synthesized as a skeleton. By adding detail
information to the coarse texture, the higher resolution
results can be generated. This skeletal growth-like
procedure makes the result more controllable. In
addition, to make full use of the spatial relationships
among texture pixels, wavelet coefficients rather than
traditional RGB channels are used to search the nearest
neighbor pixels. Experimental study shows that the
method plays well for both 2D and solid texture
synthesis.

Keywords--- texture synthesis; solid texture; wavelet;

skeletal

1. Introduction

Texture synthesis has been widely recognized as an
important research topic in computer graphics, vision,
and image processing. There has been a lot of research
which was tried to generate textures either to validate
texture models or simply to use the result in an
application.

Compared with other research, exemplar-based
methods, which synthesize a large texture from a small
exemplar, is an excellent solution. During the last decade
many example-based texture synthesis methods have
been proposed. Texture synthesis techniques could be
broadly categorized into parametric [6][13], and
nonparametric methods. The nonparametric methods
could further be classified into pixel-based methods [2]
[4][15], patch-based methods [3][9], optimization-based
methods[8], and appearance-space texture synthesis [11].

In this paper, our goal is to present an optimization
texture synthesis method based on wavelet transform,
which is accumulation error free. Furthermore, we focus
on an improved framework for both 2D and solid texture.
Our contributions include two main components: the first
component is a framework that effectively synthesizes

texture using wavelet technology; the other one consists
of an improved optimization texture synthesis algorithm.
The key advantages of the improved optimization texture
synthesis algorithm are quality and speed. For better
wavelet coefficients metric, the quality of the
synthesized textures is equal to or better than those
generated by previous techniques; meanwhile, the
computation speed is much faster than the prior ones
because of the reducible iterative synthesis times.

2. Related works

Texture synthesis seeks to generate textures of
arbitrary size from a given smaller texture sample.
Example-based optimization approach is one of the most
important methods to synthesize texture in the recent
decades. Most notable Heeger and Bergen[6] iteratively
resampled random noise to coerce it into having
particular multiresolution oriented energy histograms. De
Bonet [2] measured the joint occurrence of texture
discrimination features at multiple resolutions and
conditions of the similar joint occurrence of features at
lower spatial frequencies, but it can produce boundary
artifacts if the input texture is not tileable. Wei and
Levoy [15] adopted the algorithm to include multi-
resolution synthesis. Using Gaussian pyramids they
decomposed the texture image into different resolutions
and seeked to transform a random noise sample to
resemble the sample texture at each resolution using an
Efros style neighborhood searching approach. This
method works well on stochastic (random) textures but is
not suitable for structured textures. Johannes Kopf [7]
used 2D texture optimization techniques together with
histogram-matching to synthesize solids. It is applicable
to a wider variety of textures, but the running time is its
main problem.

The speed issue has been addressed by parallel GPU
texture synthesis [10][11] which runs much faster than
CPU-based algorithms. A further advantage of GPU
synthesis is the reduced storage; this is very important
for real-time applications as a commodity GPU often has
limited texture memory.

Although wavelet transform was first introduced in
computer graphics, it has become an important tool in
both graphics and image processing applications. In

2009 Sixth International Conference on Computer Graphics, Imaging and Visualization

978-0-7695-3789-4/09 $25.00 © 2009 IEEE

DOI 10.1109/CGIV.2009.52

18

Figure 1: Traditional multi-resolution pyramids method (left) and skeletal texture synthesis method (right). In
traditional method, process (A) getting input pyramids with down sampling method, process (B) synthesizing
texture, which must be done at every resolution pyramid, process(C) getting feature information from lower-
resolution texture. In texture skeletal method, process (D) getting input pyramids with multi-level wavelet
transform, process (E) synthesizing texture, which is optional, process(F) reconstructing output pyramids by
adding detail information to texture skeleton. It deserves to be specially noted that the high frequency coefficient
could be negative value, for better display, this will be shown in gray scale images.

particular, some authors have used wavelet transform for
texture synthesis and analysis. Portilla [13] proposed a
statistical model for texture representation using a
complete complex wavelet transform. Joseph [1]
synthesized textures by constructing multi-scale wavelet
transform tree. But these methods are all based on
statistical simulation of wavelet coefficients and have
limitations for synthesizing structural textures. Gallagher
and Kokaram [5] introduced wavelet-based multi-
resolution pyramids. Given an initial sample texture, the
algorithm generates new texture using a nonparametric
technique that incorporates the Dual Tree Complex
Wavelet Transform (DT-CWT). But this strategy only
works on pixel-based texture synthesis method. Tonietto
[14] used wavelet coefficients as metric to select nearest
patches, which improved the synthesis quality to a
certain extent. But this improved patch-based method
also leads to errors accumulating.

3. Skeletal Framework

This section describes the framework of skeletal
texture synthesis algorithm. Fig.1 left show the
traditional multi-resolution method. The traditional
method first synthesizes the texture at a coarse
resolution, and then up-sample it to a higher resolution
via interpolation. This serves as the initialization of the
texture at the higher resolution. Also, within each
resolution level, the method must run the synthesis
algorithm repetitively.

Compared with the traditional one, the right part in
Fig.1 indicates the skeletal texture synthesis framework.
More precisely a wavelet decomposition of the initial
image is computed. Optimization synthesis starts from a
coarse level. Each pixel at this coarse level corresponds
to a small patch at the finer level. To synthesize a finer
result, details are added to the coarse one. This process is

visually similar to skeletal growing from small to large.
We summarize the algorithms in the following
pseudocode.

Algorithm 1: SKELETALTEXTURESYNTHESIS(E)

The proposed method uses wavelet transform to deal
with the input exemplar E . In the decomposition
scheme, we get ()MaxLevelGin as the real input texture

and inC as detail information. With texture skeleton rE ,

a low-resolution intermediate texture ()MaxLevelGout

19

was synthesized. ()MaxLevelGout provides smooth
information and the skeleton for the objects in the image.

Using ()MaxLevelGout and inC , we can

reconstruct outG .

Figure 2: 2D texture recostruction process.

Fig.2 shows the reconstruction process. For each

pixel p in ()MaxLevelGout , we record the position

where it comes from in rE and its corresponding detail

information 1C , 2C and 3C . 1C , 2C and 3C are all
wavelet coefficients. With the detail information, we get
the final high-resolution texture I by inverse Haar

wavelet transform. Every pixel in the ()1+iGout

evolves to four pixels in ()iGout .
Similar to 2D texture reconstruction, the high-

resolution target solid S can be synthesized with detail
information H and low-resolution

solid ()MaxLevelSout . We hold H in three directions

for voxels of ()MaxLevelSout . But the high-level solid
voxels and the detail information are not one-to-one. In
other words, some voxels in S could not be generated
using the detail information directly. For those "missing"
voxels, we adopt a strategy as follows: assuming that we
want to synthesize a 128128128 ×× solid, for every
one of the three directions, using the proposed 2D texture
reconstruction, we can get 64 slices whose dimensions
are 128128 × .We mix the slices of the three directions
to get the target. For every direction, each slice toward
this direction is used twice in succession, since with
inverse Haar wavelet transform, every voxel should map
to two for each direction. Then voxel is synthesized by
mixing the values in the three directions.

4. Improved Optimization Texture Synthesis

Optimization-based texture synthesis could be
summarize as follows. First, initialize the pixel values of
output image I randomly chosen from exemplar E .
Then, the goal is to iteratively increase the similarity
between E and I . Every iterative step tries to minimize
the energy function[12] which measures the difference
between E and I .

()() { }()∑=

t
tglobal eIDisteIE ,min, (1)

globalE
 is the total energy of I compared with E ,

{ }()eID t , is the minimum distance between certain
neighborhood and all possible neighborhoods from E .

There are two main phases in the iterative process:
optimization and search. In the optimization phase, the
texel value of I is changed based on the search results.
For each pixel p , we calculate its values by weighted
average of all the neighborhoods including pixel p . In
the search phase, the goal is to optimize Eq.(1) by
finding the best matching in E for every neighborhood

tI . The new neighbor index is held in an array to be
used for the optimization phase. This is a standard
nearest neighbor search in a high-dimensional space, and
it determines the running time of the method.

The critical part of the texture synthesis algorithm is
nearest patch searching. The former techniques usually
apply RGB, specular, shininess or displacement channels
to compare patches and build a list of candidate patches
which satisfy an error criterion. It searches the input
image for all possible patches, and picks the patch with
smallest distance as the nearest one. The distance is
computed for the patches as follows:

() ()
2

1
2

1

1,
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−= ∑

=

A

n

n
e

n
Iit it

pp
A

eIDist (2)

Where A is the number of pixels in the patch,

and
n
It

p
 represents the value of the n-th pixel in the

neighborhood tI . The pixel's values can be either
grayscale or RGB triplets.

In our method, the criterion to compute the
neighborhoods' distance was replaced by wavelet-based
one, since the wavelet transform has nice localization
properties in both the spatial and the frequency domains.
To compute the distance between two neighborhoods,
wavelet coefficients are selected as target channels.

() ()∑ ∑
= =

⎥
⎦

⎤
⎢
⎣

⎡ −=
BGR

A

n

n
e

n
Iit it

CCeIDist
,, 1

2,
ψ

ψ
 (3)

20

Where A is the number of pixels in a patch, and
n
It

c
 represent the values of the n-th wavelet coefficient in

the neighborhood tI .

Figure 3: Comparisons between our method and
Gallagher’s.

Through wavelet transform the high-frequency

coefficients hC (detail coefficients) can represent
spatially local phenomena such as edges. While we all
know that the human visual system is very sensitive to
edges, corners etc, this makes this criterion more suitable
for textures containing regular noticeable features. Our
results also showed that this criterion can get rather
better neighborhood matching.

5. Results

We implement the proposed approach by using C#
language on a PC with a 2.8GHz CPU and 1GB RAM.
Fig.3 shows comparison between our method and
Gallagher's. Fig.6 shows some representative results.
Some solids synthesized by our method are effortlessly
mapped on a variety of 3D objects with non-trivial
geometry and topology.

The results show that our method can apply to most
kinds of exemplars. For the low-resolution synthesis
process, there are two ways that could be used to
speedup the searching process. First, the low resolution

exemplar rE replace the original one E , that is, the
smaller exemplar, the smaller searching space. Second,

the feature of texture in rE is similar to, but smaller than
that in E , smaller neighborhoods should be used in the
searching process. Thus, less number of pixels will be
calculated. We benefit from it not only speeding up the
synthesis process, but also making our method more fit
for texture containing large scale structures.

Figure 4: Time comparison of our method with 1
level wavelet transform and Kwatra’s method for 2D
texture synthesis. The exemplars are 128 × 128,
and the neighborhood is 13 × 13.

Figure 5: Time comparison of our method with 1
level wavelet transform and Kopf’s method for solid
texture synthesis. The exemplars are 128×128, and
the neighborhood is 13 × 13.

In our experiments we use one level wavelet

transform. The synthesis time depends on size of input
texture, the output and the size of the neighborhood.
Fig.4 and Fig.5 show the time comparison between our
method with one level wavelet transform and the former
ones without wavelet. From these time curves, our
method reduces the time cost greatly, especially when
the output is large. To get a solid large enough to contain

21

the object, Kopf's method [7] has to synthesize a set of
Wang cubes to get the result solid. This strategy usually
brings repeated texture in the surface of the object. For
the time cost reduction, our method can get solid large
enough to contain the object in acceptable time.

6. Conclusions and future work

This section describes the framework of skeletal
texture synthesis algorithm. Fig.1 left show the
traditional multiresolution method. The traditional
method first synthesizes the texture at a coarse resolution,
and then up-sample it to a higher resolution via
interpolation. This serves as the initialization of the
texture at the higher resolution. Also, within each
resolution level, the method must run the synthesis
algorithm repetitively.

In this paper, we proposed wavelet-based framework
for the exemplar-based texture synthesis algorithm. We
have successfully applied texture skeleton synthesis
method to improve the former algorithm. Our method
tries to deal with exemplar from a different angle, we can
get additional information about pixels' spatial
relationships. An exemplar does not have only RGB,
specular, shininess or displacement, but also wavelet
coefficient. By wavelet transform the texture has nice
localization properties in both the spatial and the
frequency domains. With the former method, high-
dimensional vectors make the algorithm too slow; to
solve this problem we have different path. First, we use
some algorithms to reduce the dimension, for example
PCA, but this needs extra time; Second, select effective
channels to integrate redundancy channel, without
additional time cost. Furthermore, we are excited about
the possibilities of using the method on both 2D and 3D
texture synthesis.

Interesting directions for future research include
further improving the quality and the speed of synthesis.
For example, we plan to further optimize the overlap
area between the contiguous neighborhoods. We also
plan to use GPU to further accelerate the method.
Another promising and important direction is to develop
a parallel algorithm.

7. Acknowledgment

This work has been supported by National Natural
Science Foundation of China under Grant No.60673196
and No.60776807, Key Topic of 863 Program under
Grant No.2006AA12A105, the Natural Science
Foundation of Tianjin under Grant No.07F2030, Key
Projects in the Science and Technology Pillar Program of
Tianjin under Grant No.08ZCGYSF00401 and
No.08ZCKFGX04100.

References

[1] Ziv Bar-joseph, Ran El-yaniv, Dani Lischinski, and
Michael Werman. Texture mixing and texture movie
synthesis using statistical learning. IEEE Transactions on
Visualization and Computer Graphics, 7:120–135, 2001.

[2] Jeremy S. De Bonet. Multiresolution sampling procedure
for analysis and synthesis of texture images. In
Proceedings of SIGGRAPH 1997, Computer Graphics
Proceedings, Annual Conference Series, pages 361–368.
ACM, ACM Press, 1997.

[3] Alexei A. Efros and William T. Freeman. Image quilting
for texture synthesis and transfer. In Proceedings of
SIGGRAPH 2001, Computer Graphics Proceedings,
Annual Conference Series, pages 341–346. ACM, ACM
Press, 2001.

[4] Alexei A. Efros and Thomas K. Leung. Texture synthesis
by non-parametric sampling. In Proceedings of IEEE
ICCV 1999, Computer Vision Proceedings, Annual
Conference Series, pages 1033–1039. IEEE, 1999.

[5] C. Gallagher and A. Kokaram. Nonparametric wavelet
based texture synthesis. In Proceedings of IEEE ICIP
2005, Image Processing Proceeings, Annual Conference
Series, pages 462–465. IEEE, 2005.

[6] David J. Heeger and James R. Bergen. Pyramidbased
texture analysis/synthesis. In Proceedings of SIGGRAPH
1995, Computer Graphics Proceedings, Annual
Conference Series, pages 229–238. ACM, ACM Press,
1995.

[7] Johannes Kopf, Chi-Wing Fu, Daniel Cohen-Or, Oliver
Deussen, Dani Lischinski, and Tien-Tsin Wong. Solid
texture synthesis from 2d exemplars. ACM Transactions
on Graphics, 26(3):1–9, July 2007.

[8] Vivek Kwatra, Irfan Essa, Aaron Bobick, and Nipun
Kwatra. Texture optimization for example-based
synthesis. ACM Transactions on Graphics, 24(3):795–
802, July 2005.

[9] Vivek Kwatra, Arno Sch¨odl, Irfan Essa, Greg Turk, and
Aaron Bobick. Graphcut textures: Image and video
synthesis using graph cuts. ACM Transactions on
Graphics, 22(3):277–286, July 2003.

[10] Sylvain Lefebvre and Hugues Hoppe. Parallel
controllable texture synthesis. ACM Transaction on
Graphics, pages 777–786, 2005.

[11] Sylvain Lefebvre and Hugues Hoppe. Appearancespace
texture synthesis. ACM Transaction on Graphics,
25(1):541–548, January 2006.

[12] Darwyn R. Peachey. Solid texturing of complex surfaces.
In Proceedings of SIGGRAPH 1985, Computer Graphics
Proceedings, Annual Conference Series, pages 279–286.
ACM, ACM Press, 1985.

[13] Javier Portilla, Eero, and P. Simoncelli. A parametric
texture model based on joint statistics of complex
wavelet coefficients. International Journal of Computer
Vision, 40:49–71, 2000.

[14] Leandro Tonietto, Marcelo Walter, and Claudio Rosito
Jung. Patch-based texture synthesis using wavelets. In
Proceedings of SIBGRAPI 2005, pages 383–389, 2005.

[15] Li-YiWei and Marc Levoy. Fast texture synthesis using
tree-structured vector quantization. In Proceedings of
SIGGRAPH 2000, Computer Graphics Proceedings,
Annual Conference Series, pages 479–488, New York,
2000. ACM, ACM Press.

22

Figure 6: Texture synthesis results by our method with 1 level wavelet transform. The exemplars
and corresponding results are listed as (a)flower pattern, (b)brick, (c)leaf, (d)animal
skin,(e)peanut, (f) RGan cool. (g) to (i) in the third line are solid cube textures, (j) to (l) in the
fourth line are corresponding solid textures carved by Stanford bunny.

23

