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Multi-exposure image fusion has emerged as an increasingly important and interesting research
topic in information fusion. It aims at producing an image with high quality by fusing a set of
differently exposed images. In this article, we present a pixel-level method for multi-exposure image
fusion based on an information-theoretic approach. In our scheme, an information channel between
two source images is used to compute the Rényi entropy associated with each pixel in one image with
respect to the other image and hence to produce the weight maps for the source images. Since direct
weight-averaging of the source images introduce unpleasing artifacts, we employ Laplacian multi-
scale fusion. Based on this pyramid scheme, images at every scale are fused by weight maps, and a
final fused image is inversely reconstructed. Multi-exposure image fusion with the proposed method
is easy to construct and implement and can deliver, in less than a second for a set of three input
images of size 512×340, competitive and compelling results versus state-of-art methods through

visual comparison and objective evaluation.
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1. INTRODUCTION
Image fusion is a process in image synthesis where various
source images obtained from multiple sources of the same
object/scene are combined to produce synthetic and visually
improved images for human visual perception [1]. With the
continuous improvement of the camera functions of mobile
devices, such as mobile phones, photography is becoming
more and more convenient and fast, and the content and
performance of images are constantly enriched, making
people invariably pursue technological perfection. Given the
poor lighting condition and limited dynamic range of digital
imaging devices, the range of colors that the acquired images
can represent is limited. For a normal low dynamic range
(LDR) digital camera, details in brighter and darker regions

can not be fully captured in one exposure, and rich details
can not be displayed completely. Consequently, in order
to obtain better quality images with appropriate contrast,
vivid color and rich details, which characterize high dynamic
range (HDR) images, a variety of imaging and enhancement
techniques based on a single image have been proposed [2–6].
Nonetheless, these techniques can not restore saturated pixel in
LDR images, and thus researchers are paying more and more
attention to multi-image-based imaging techniques [7–17] to
overcome this constraint that single image-based techniques
have.

In a HDR image synthesis technique [18], the real expo-
sure can be obtained by the exposure sequences, and then
tone mapping should be performed on the HDR image to
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adapt to the LDR of the display device [19–26]. Hardware
solutions for solving HDR reconstruction have been proposed
such as in [27], implementing a HDR imaging system with a
highly programmable camera unit with high throughput A/D
conversion, in [28], proposing a weighting function that pro-
duces statistically optimal estimates under the assumption of
compound Gaussian noise, and in [29], presenting a unifying
approach performing HDR assembly directly from raw sensor
data. Also, several deep learning methods have emerged as in
[30], to address the artifacts for dynamic scenes in HDR merge
process, [31], for image reconstruction from a single expo-
sure, and [32], to model the entire HDR video reconstruction
process.

Another important technique is multi-exposure image fusion
(MEF), which combines a sequence of LDR images to create
an enhanced image to be displayed in LDR digital cameras.
According to [33], MEF is commonly preferred in most con-
sumer grade devices because of its ease of implementation and
its lower cost compared to HDR cameras and HDR compatible
display devices.

Different kinds of fusion methods have been presented,
such as weighted-average methods in space domain, principle
component analysis, multi-scale fusion methods, which are
introduced in detail in [34]. Generally, the fusion algorithms
are split into three categories: pixel level, feature level,
and decision level, according to the way of performing
[35]. For the fusion algorithms, the key challenge is to
select the information measure or quality measure index
for the source image sequence that directly affects the
detail extraction. However, there is much room for improve-
ment in the preservation of the details of existing fusion
algorithms.

Inspired by this, we propose a measure based on an
information-theoretic channel to retain more details in the fused
result. The information channel has been successfully used in
medical imaging and in other areas of visual computing [36,
37]. Due to the relationship between the different exposure
images, we do not measure images separately. We establish
an information channel between two images, and use Rényi
entropy to evaluate one image with the other one. Owing
to the fact that we perform blending by weight map at
pixel level, noise is introduced. To get around this problem,
we perform fusion at multiple scale, and then reconstruct
fused images at each scale into a final fused image. The
proposed method can capture more details in the fusion
results.

In this paper, we expand our preliminary work in [38] in
several lines:

• We build information channels for every pair of images,
instead of for only consecutive images ordered by expo-
sure time in [38].

• We use Rényi entropy, an extension to Shannon entropy
used in [38], to compute the information measure
of a pixel in one image with respect to the other
image.

• We show the computation complexity by dividing the
fusion process into four steps including pre-treatment,
channel building, weight map computing, and fusion by
Laplacian pyramid frame.

• We weight the entropies obtained from the information
channel of two images with the gaussian difference of
the two images to allow to compensate for the increasing
differences in exposure in the series of input images.

• We compare our Rényi results with six previous MEF
methods with MEF-structural similarity index measure
(MEF-SSIM), mutual information, entropy and entropy
rate measures, against only comparison with entropy rate
measure in [38].

The rest of this paper is organized as follows. Related work is
given in Section 2. In Section 3.1, an overview of the proposed
method is presented. Experimental results, parameter determi-
nation, comparison to the current state-of-the-art methods and
computation complexity are introduced in Section 4 and finally
the paper is concluded and prospected in Section 5.

2. RELATED WORK

In the multi-scale fusion framework, there are different ways
to measure information. Burt and Kolczynski [39] first applied
Laplacian pyramid in image fusion, where fusion at each
level is guided by selecting maximal local energy. Instead of
using the same fusion principle, Mertens et al. [9] adopted the
quality measures of contrast, saturation, and well-exposure to
guide the image fusion at each scale, obtaining more appealing
results. Based on this method, Li et al. [40] developed a detail-
enhanced method by employing a detail extraction component
as a quadratic optimization problem so that more details can
be preserved, and then further improved it in [41]. Ancuti et al.
[42] developed a single scale fusion method, and used saliency
as quality measure besides those utilized in [9].

To avoid losing detail, different filters to preserve details
were applied in [11], [43], [44]. Li and Kang [11] produced
weight maps by local contrast, brightness and color dissimi-
larity and then refined them by recursive filtering. Raman and
Chaudhuri [43] used bilateral filters to preserve details. Then
Li et al. [44] proposed a guided filtering-based weighted aver-
age method that highlights pixel saliency and spatial consis-
tency with two-scale decomposition. Weighted guided image
filtering was utilized by [17] to avoid amplifying the noise.
Recently, Patel et al. [45] proposed a propagated image filter
to generate weight maps of input images and used gradient
domain postprocessing to improve the result. Ma and Wang
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[46] introduced a new method to avoid disturbing noises, by
decomposing an image patch into three components: signal
strength, signal structure and mean intensity, measuring them
separately based on patch strength and exposition measures,
and then reconstructing the patches for the fused image.

Apart from the methods mentioned, Zhang et al. [47]
combined source images as a weighted sum to form a fused
image, and the weight was defined by gradient-directed quality
assessment. Shen et al. [48] introduced a method for fused
image based on perceptual quality measurement. Yu et al. [49]
employed spatial distribution of intensity to fuse differently
exposed images. Dong et al. [50] implemented a method based
on registration to fuse images. Qin et al. [51] presented the
fusion of images for dynamic scenes using optimization. Wang
et al. [52], Shen et al. [53] and Wang et al. [54] proposed
a segmentation method for image fusion. Probabilistic model-
based techniques have also been used to construct a fused image
[55, 56]. These probabilistic model-based techniques are more
complex as compared to other methods. Merianos et al. [57]
combined two image fusion methods with luminance channel
and color channel to tackle multiple-exposure fusion. Ulucan
et al. [33] developed a method based on weight map extraction
via linear embeddings and watershed masking for static image
exposure fusion.

In addition, information theory has been used in image
fusion in recent years. Goshtasby [8] used entropy to measure
the information of each uniform piece of the image and then
blended these input images by rational Gaussian functions,
where the optimal block size and filter width are obtained by
gradient-ascent algorithm, yet as [9] commented, halo artifacts
around edges can not be well avoided. Herwig et al. [58]
utilized local entropy with adaptive filter size to measure pixel-
wise information. Bramon et al. [36] applied mutual infor-
mation measures in the context of multi-modal medical 3D
volumetric image fusion, using the more informative voxel
intensity from the two source images as the voxel intensity of
the fused image.

Our previous paper [38] investigated MEF based on mutual
information measures I1 and I2, introduced for fusion by Bra-
mon et al. [36], and then compared them with the Shannon
conditional entropy (CE) to measure contributions of pairwise
pixels for MEF. The CE measure proved better than I1 and
I2. Upon this basis, we explore here the extension of Shannon
entropy to Rényi entropy to improve the fused result, which
allows for a trade-off between the details preservation and
esthetic appeal and improve the weighting of the information
maps by taking into account the gaussian differences between
the source images.

3. INFORMATION CHANNEL FOR MEF

3.1. Overview of the proposed method

An overview of the processing steps of our approach is shown
in Fig. 1. These steps are explained in detail in the follow-

ing sections. The information-theoretic channel (as shown in
Fig. 2) is explained in Section 3.2. The information measures
(conditional Shannon entropy and Rényi entropy) are intro-
duced in detail in Section 3.3. Finally, we employ multi-scale
fusion in Laplacian pyramid frame (Fig. 4, Section 3.4) to get
pleasing fused image.

3.2. Information channel

Like in our prior work [38], two images are interpreted as
random variables and an information channel is built between
them to calculate pixel-wise weights. The two images, which
have equal size and thus contain the same number of pixels, are
represented by their normalized luminance histograms, which
are denoted by X and Y , and the corresponding bins of the
histogram are expressed as x and y (in this paper we compute
luminances using the formula 0.11 × B + 0.59 × G + 0.3 × R,
where R, G and B are the red, green and blue color components
[59]). As shown in Fig. 2, the channel from X to Y , X → Y
is given by a matrix M of conditional probabilities p(Y|X),
together with the marginal probabilities, p(X) and p(Y). If there
are n bins in X, m bins in Y , the matrix is n × m dimensional,
where M(y, x) is p(y|x) (see the diagram in Fig. 2b). Similarly,
the channel from Y to X is expressed by a m × n dimensional
matrix of p(X|Y).

In Fig. 2b, p(x) and p(y) are the probabilities corresponding
to bins x and y, and p(y|x) is the conditional probability of y
given x. N(x) and N(y) are the number of pixels whose pixel
value falls within bin x and y, respectively, and N(x, y) is the
number of corresponding pixels on both images (that is, pixels
at the same position in both images), which color in the first
image falls in bin x and in the second image in bin y. The
probabilities are computed as relative frequencies:

p(x) = N(x)∑
x∈X N(x)

p(y|x) = N(x, y)

N(x)
. (1)

3.3. Information measures

3.3. Conditional entropy
The mutual information between variables X and Y expresses
their shared information. The ‘CE’ represents the uncertainty
of one variable conditioned to the other variable. Deweese and
Meister [60] proposed the concept of specific information of
one element, and different decompositions of mutual informa-
tion I1, I2 were proposed, adopted later by Bramon et al. [36]. In
Zhao et al. [38] it was empirically found that the weights based
on CE performed much better than weights based on mutual
information measures I1 and I2.

The reason why entropy can work better than mutual infor-
mation might be found in that measures based on mutual
information are directly related to the output distribution, as I1
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FIGURE 1. Overview of the different processing steps of our MEF approach.

FIGURE 2. The information channel X → Y from X to Y .

can be expressed as the relative entropy or Kullback–Leibler
distance of p(Y|x) to p(Y), or directly related to the input
distribution p(X), as I2 can be expressed as H(X) − H(Y|x).
The input and output distributions for the channels between the
different exposure images are the frequency histograms, which
can be very different due to different exposure, see left and right
image histogram in Fig. 2. This means that mutual information-
based measures can be good to decide which pixel, in either
of both images, holds more information, but not the relative
size of this information. This is, to choose the more informative

pixel from the two images in a channel, as Bramon et al. [36]
did, mutual information can be very good, but to use mutual
information to weight average between both pixels would make
the result distorted. In contrast, entropy, which stands alone
as a measure, can be considered as the complementary of the
distance to the uniform distribution, which is the same for all
the images, and thus puts all entropies considered on the same
ground.

The measure CE used in [38] comes from the CE of bin x,
H(Y|x), which gives the new distribution of Y , or remaining
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FIGURE 3. The first row of images are source images, and the second
row of images are the corresponding weight maps.

uncertainty, once known X = x, and is given by Equation 2.

H(Y|x) = −
∑
y∈Y

p(y|x) log p(y|x). (2)

Observe that Equation 2 is the Shannon entropy of the con-
ditional distribution p(Y|x). Next, the normalized weight map
can be produced by Equation 3, where Wx and Wy represent
weights of bins x and y, respectively. We assign to a pixel the
weight corresponding to its color bin, this is, all the pixels in
the same bin have the same weight. The pixel with higher CE
has higher uncertainty, and thus has less correlation to the other
image. Hence, weights are inversely proportional to CE:

Wx = H(X|y)
H(Y|x) + H(X|y) ,

Wy = H(Y|x)
H(Y|x) + H(X|y) . (3)

For multiple source images (e.g. X, Y and Z), we consider
the information of X, Y over Z (e.g. H(X, Y|z)), but its compu-
tation would be inefficient and inaccurate, as it is based on a
very sparse three-dimensional matrix. Therefore, we compute
weight maps in pairwise images and normalize them to the
same scale.

3.3.1. Overexposed and underexposed regions
Observe that the color of pixels from overexposed and under-
exposed regions will be selected in the fusion process from
the non-over or non-underexposed images. This can be seen

in the following way. For an overexposed image X, where the
luminance of the overexposed region will have a maximum,
constant value, say lmax = ln, the corresponding region in the
not overexposed image Y will have a scale of luminances, say
to simplify ln−1, ln−2. This means that the entropy H(X|ln),
as the conditional probabilities p(X|lmax) are distributed over
ln−1, ln−2, is higher than H(X|ln−1) and H(X|ln−2), as very
probably most of the pixels with ln−1, ln−2 value in Y image
are paired with ln value in X image, and thus the pixel in
the non-overexposed image Y will be given a higher weight.
Observe that the same can be told of an underexposed image.
An exception would be when all pixels with constant maximum
luminance ln in the overexposed image would be substituted by
another constant luminance, say ln−1, in the non-overexposed
image, as in that case the weight of the pixel in both images
would be the same. We have not observed this situation in our
experiments, but if there would be the case, the effect would be
damped as we build information channels for all pairs of source
images.

Next, we present the Rényi extension of Shannon entropy.

3.3.1. Rényi entropy
Based on Shannon entropy, Alfred Rényi [61] proposed a
generalized entropy, defined by

Rα = 1

1 − α
log

∑
x∈X

p(x)α , (4)

where the parameter α is greater than or equal to 0. When α is
equal to 1, Rényi entropy reverts to Shannon entropy.

The value of α modulates the relative importance of the
probability distribution values p(x). For α > 1 the bigger p(x)
values, which correspond to bigger regions (remember that p(x)
is the relative number of pixels with luminance x) become more
important and smaller regions become less important, and thus
the distribution becomes less entropic and more detail aware.
For α < 1 the smaller p(x) values and thus the smaller regions
increase its importance, and the distribution becomes more
entropic.

Following Eq. 4, the conditional Rényi entropy of Y over x
is defined by

Rα(Y|x) = 1

1 − α
log

∑
y∈Y

p(y|x)α . (5)

Rα(Y|x) indicates the information of luminance value x relative
to histogram Y (or by abuse of language, image Y) and can be
calculated based on X → Y . Similarly, to get the information
of luminance value y relative to histogram or image X, we need
to compute Rα(X|y) based on Y → X.

For two images X and Y , we build the information channels
X → Y and Y → X, based on which, the information of x on
Y and of y on X will be measured by Rényi entropy. Similar to
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Equation (3), the normalized weight of luminance value x is

Wx = Rα(X|y)
Rα(Y|x) + Rα(X|y) , (6)

and bin y is

Wy = Rα(Y|x)
Rα(Y|x) + Rα(X|y) . (7)

We call Rα(X|Y) and Rα(Y|X) the vectors of values for all y and
x respectively. To compute the weights of two corresponding
pixels (this is, in the same position) with quantized luminance
values x, y, we look up in Rα(X|Y) using y and in Rα(Y|X) using
x, and then apply Equations 6 and 7. For fusion of more than
two images, we considered building an information channel
between each pair of images, and adding up the information
obtained from each channel to compute the information of
each source image. However, the contribution of each channel
should be different, as the greater the difference of the images in
the channel, the less should be the association and contribution
of the information. Thus, we give lesser weights to those
channels in which images are more dissimilar in the following
way.

3.3.2. Gaussian difference
Given a sequence of source images, S1, S2, · · · , Sn, for each
source image Sk the channels with all the other images are
constructed, i.e. Sk → St, based on which we compute the
corresponding Rα(Sk|St), where t = 1 · · · n, t �= k. Then the
weight of Rα(Sk|St) is defined by

wk,t(i, j) = Gk,t(i, j)∑n
l=1,l �=k Gk,l(i, j)

, (8)

where (i, j) is the pixel with coordinates i and j and where Gk,t
is the Gaussian function of image difference:

Gk,t = 1

σ
√

2π
e
− (Sk−St)2

2σ2 . (9)

Note that as this difference is computed on all pixel luminance
values, which are scaled to [0,1], then Gk,t has the same scale
as the source image. Equation (8) illustrates the normalized
weight of channel between the kth and tth images.

3.3.3. Information maps
We then weight average the information obtained from each
channel to obtain I′

k(i, j), the information of image Sk

Ik(i, j) =
⎡
⎣

n∑
t=1,t �=k

wk,t(i, j) · Rα(Sk|St)(i, j)

⎤
⎦

β

, (10)

FIGURE 4. An example of fusion in the frame of Laplacian pyramid
(3 layers). X, Y represent two source images, Z is the fused image.
Lk

X(Lk
Y ) is the kth layer of source images, Wk

X(Wk
Y ) is the corresponding

filtered weight map, and Rk
Z is the kth layer fused image, where k ∈{0,

1, 2}.

where the Rα(Sk|St)(i, j) value is obtained by looking up the
value in Rα(Sk|St) using the quantized luminance value of pixel
(i, j) in image St, and β a power exponent to fine-tune the result.
Normalizing the Ik(i, j) values we finally obtain the information
map Wk(i, j) for image Sk

Wk(i, j) = Ik(i, j)∑n
t=1,t �=k It(i, j)

. (11)

Figure 3 shows a group of source images with decreas-
ing exposure (top) and their respective weight maps (bottom)
obtained by the proposed information measure. The brighter
the weight maps, the higher the weights. Comparing the source
images and weight maps, we can see that the first weight map
has more information in the tower and grassland area, but less in
the sky area, whereas the second and the third both show more
details of sky, which is in line with our visual perception. In the
third source image, we observe that there is a magnified area,
which is the most informative among all images and indicated
by the weight map clearly.

3.4. Laplacian fusion

The next step is to blend the source images according to their
weights. However, the fused image produced by direct average
weighting is usually unacceptable due to disturbing seams,
which results from large difference and sharp transitions in
the weight maps. Smoothing weight maps by Gaussian or
bilateral filters is insufficient [9]. Here, we carry out ‘Laplacian
pyramid’, which has sufficiently good performance in image
fusion as remarked by [9, 42]. Source images are decomposed
into multiple scale images, then blending by weight map is
performed at each level, and finally all levels are reversely
reconstructed into a fused image. To adapt the size of the image
at each level, the weight maps obtained from the original source
images are downsampled with Gaussian filter. The multiscale
fusion diagram based on Laplacian pyramid is given in Fig. 4.
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FIGURE 5. The entropy rates of fused images based on different
values of α.

4. EXPERIMENTAL RESULTS

4.1. Parameter determination

In this section, we will discuss the determination of parame-
ters in the proposed method used. Firstly, image probability
distributions are given via the normalized histograms obtained
from gray values. Note that we use less number of bins than
the original value of 256. This is because the more the bins, the
more sparse the channel matrix, and thus the more inaccurate
the result. Also, the cost of the channel construction is quadratic
in the number of bins. Zhao et al. [38] considered eight bins to
be a good balance between the detail preservation and calcu-
lation performance. Although more details could be captured
if more bins are used, there was no significant improvement in
the results. Thus we follow Zhao et al. [38] and set 8 as number
of bins. The information channels between two source images
can be constructed once assigned bin number by Equation 1.
Then based on the specific criteria, the weight maps of the two
source images can be generated.

For the proposed Rényi entropy measure, we fix the values
of the parameters after repeated experimentation. Using five
pyramid layers gets attractive results. For the standard deviation
σ of the Gaussian function to compute information channel
weights, we set σ = 0.5. About power exponent β in Equation
10, which needs to be decided to fine-tune the result, we set
its value as 2, which makes the information between different
source images more distinguishable. Additionally, an important
parameter is α to compute the Rényi entropy-based information
measure. To analyze the appropriate values for α, we compute
entropy rates of fused images based on different α, the curves
are shown in Fig. 5.

In Fig. 5, we can see that there is more fluctuation in the
curves of scenes House and Cave, Fig. 6, therefore we show
these fused results based on different values of α in Fig. 7. From
Fig. 7, we can observe that there are more details when α equals
0.2 for the two scenes. In the curves, these two fused results
with 0.2 have higher entropy rate. We can also see in Table 1
how the value of α = 0.2 gives the bigger MEF-SSIM [62]

TABLE 1. MEF-SSIM scores of fused results with different α corre-
sponding to Fig. 7.

α House Cave

0.2 0.9029 0.9519
0.4 0.8846 0.9414
0.6 0.8853 0.9409
0.8 0.8852 0.9408
1.0 0.8895 0.9412
1.2 0.8830 0.9413

score for all the images considered. Thence, we selected α as
0.2 to generate the weight maps.

4.2. Comparison with other methods

4.2. Visual Effect
In the following, we compare the fused results of our previous
method and our new method (Fig. 8e and g) from different
scenes with other five methods,this is shown in Fig. 8. The
source image sequences and the results by the comparison
methods, except [46], [38] and [57] ones, are obtained from
the MEF database created by Ma et al. [62, 63]. The source
images in the MEF database are all aligned. For unaligned
source images a preprocess to register them should be done
first.

Ma et al.[46] and Merianos et al. [57] results are obtained
with the software by the authors[64] and [65], respectively,
the last one without its postprocessing option. The software by
Merianos et al. [65] merges a black frame on the results, visible
in the images, and allows only three input source images.
Figure 9 gives the close-ups corresponding to the fused results
in Fig. 8.

In the first row of Fig. 8, the House scene, we can observe
that the left and right parts are inconsistent in color in the fused
image of Mertens [9], as can be perceived in the color of the
two chairs. The results by S.T.Li [11] and Li [44] have the
same problems as Mertens ones. The close-up of the window
is shown in the first row of Fig. 9. In it, we can see that the
result of Ma [46] yields the region outside the window a little
overexposed, whereas the results based on entropy (see Fig. 9e
and g) show more details outside the window.

In the second row, the Venice scene, it can be seen in Li’s
result [44] that the color of sky is deep and inconsistent with
the color of water reflection, something that does not happen
in our result. Moreover, it is perceivable that our fused result
has more details in the boat and water surface. On top of that,
comparing the pole regions (lower right corner area) in the
results by Mertens [9], Ma [46] and Merianos [57], our result is
more detail-preserving and brighter. Also comparing the round
roof region in the results by S.T.Li [11] and Li [44], our fused
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FIGURE 6. Source images for the house and cave scenes.

FIGURE 7. Fused results based on Rényi entropy with different α values for the House and Cave scenes.

images are better because of color consistency (it can also be
observed from the close-up in the second row of Fig. 9).

For the third row of results, the Cave scene, our fused image
contains more details inside the cave, and the visual effect using
Rényi entropy (see Fig. 9g) is more natural.

For the Farmhouse scene, although the fused images are in
general very similar, the fused image in Zhao [38] and Rényi
contain more details in the window regions (the regions were
cut out in Fig. 9).

For the Garden scene Rényi’s results can render better the
details (see close-up in Fig. 9), at the cost of a less contrasted
sky.

For the Lighthouse scene, for Mertens [9], Ma [46] and
Merianos [57] the foreground beach looks too darker, whereas
for Reny, S.T.Li [11], Li [44] and Zhao [38] looks brighter
and the rocks details are easier distinguished (see close-up
in Fig. 9). On the other hand, Zhao’s rendering of the house
looks a bit washed out. Interestingly, this scene is where the
methods differ most, apart from the beach observe for instance
the different rendition of the streak of light in the sky in the left
upper side of the images in Fig. 8.

Finally, in our Rényi result for the Tower scene, the details
of the tower are clearly presented, along with the sunlight next

to it. Meanwhile, grass and flowers in tower scene also have
a nice visual feeling, which can be seen from the last line in
Fig. 9. All in all, from these results, it can be observed that our
method can preserve more details and contrast in the over and
underexposed regions.

We can also observe that in general the results produced by
our new method based on Rényi entropy (Figs 8g and 9g) are
brighter than the ones obtained with our previous method [38]
based on Shannon CE (Figs 8e and 9e).

4.2. Objective Evaluation
In addition to subjective visual effect comparison, we also
introduce objective evaluations, i.e. entropy of fused image,
mutual information between source images and fused image,
entropy rate of fused image, and MEF-SSIM. The entropy can
roughly measure the amount of information in an image. The
entropy rate of an image can measure the contrast, as proposed
by Vila et al. [66]. Different from these two evaluations, mutual
information reflects the consistency of the fused image with the
source images.

First, from Figs 10-13 we observe that Rényi method notably
improves, except for Lighthouse and Garden mutual informa-
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FIGURE 8. Fused results by different methods. House and Cave are not shown with Merianos’ method [57], as it only allows three input images.
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FIGURE 9. Close-up of fused result comparison with other methods. House and Cave are not shown with Merianos’ method [57], as it only allows
three input images.
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FIGURE 10. Entropy of fused results.

FIGURE 11. Mutual information of fused results.

tion, on our previous CE method [38] in all three measures but
one, entropy rate, where the values are very similar.

Now, from Fig. 10, we can observe that the resulting entropy
of our approach is a second after Ma’s method. We can observe
in Fig.11 that mutual information of Rényi’s results is very
similar to Ma’s, except for Lighthouse, and both are better than
the other methods.

The MEF-SSIM measure, introduced by Ma et al. [62],
is also employed as an image quality assessment metric of
fused results. The results of this measure are shown in Fig. 13,
where it can be observed that all the methods score very
similarly. Of the four measures considered, MEF-SSIM is the
one with smaller differences between the compared methods.
The best results are by Ma [46] and then Mertens [9] and Li
which score almost identically, maybe because Li’s method
is actually a detail-enhanced algorithm built upon Mertens’s
method. Our method with Rényi entropy scores a bit better
than S.T.Li [11] and Merianos [57] one. Although our Rényi
method does not score within the three first ones from Fig. 13,
the very small differences with the higher scoring methods
make it competitive with respect to MEF-SSIM measure too,
in addition to having a solid theoretic background. In summary,
our results are competitive and promising when considering all
these evaluation indexes.

FIGURE 12. Entropy rate of fused results.

FIGURE 13. MEF-SSIM scores of fused results.

4.3. Computation complexity

All the experiments are performed on a Windows system com-
puter with Intel Core i7 CPU and 8GB memory. The fusion
process is divided into four steps, including pre-treatment,
channel building, weight map computing, and fusion by Lapla-
cian pyramid frame. In the pre-treatment step, preprocessing
the color image into gray scale image is carried out, as well as
computing the relationship between each pair of images.

The consumed time in each step and the respective percent-
age of total time cost are shown in Table 2. Since we need
to compute weights of each pixel, the cost of our method is
proportional to the number of pixels in a source image. From
Table 2, we can see that the biggest cost corresponds to channel
building, as we build information channels between every two
source images sequentially instead of computing it in parallel.
On the other hand, computing the weight maps and fusing the
results is only ∼25 or 30% of the total time. It means that we
could compute fused images for different values of α with small
overhead, because the bulk of the computation, between 70 or
75%, has not to be repeated. The total time of the unoptimized
method is ∼1 second for three or four source image fusion.

It is difficult in general to compare the complexity with
other methods, as usually it is not provided. Zhang [67] pro-
vides a benchmark for MEF methods with two source images,
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TABLE 2. Time cost in each step, in seconds, and time cost in each step as percentage of total cost. N is the number of input source images and
w × h is their resolution.

Scenes w × h × N Pre-treatment Channel
building

Weight maps Lap-fusion Total time

House 512 × 340 × 4 0.172 (17.01%) 0.585 (57.86%) 0.185 (18.30%) 0.069 (6.82%) 1.011
Venice 512 × 341 × 3 0.130 (21.10%) 0.293 (47.56%) 0.126 (20.45%) 0.067 (10.88%) 0.616
Cave 512 × 384 × 4 0.175 (15.10%) 0.668 (57.64%) 0.226 (19.50%) 0.090 (7.77%) 1.159
Farmhouse 512 × 341 × 3 0.124 (20.88%) 0.295 (49.66%) 0.107 (18.01%) 0.068 (11.45%) 0.594
Tower 341 × 512 × 3 0.136 (22.04%) 0.296 (47.97%) 0.115 (18.64%) 0.070 (11.35%) 0.617

underexposed and overexposed, and comments about the cost
that regarding pixel-based, patch-based, edge-preserving-based
and multi-scale-based methods, have running time generally in
the same order of magnitude.

5. CONCLUSION AND FUTURE WORK

We have proposed a multi-exposure fusion approach based on
building an information channel between each pair of images.
Instead of considering each source image independently, we
pondered the information that each image in a pair contains
about the other one, measured using Rényi entropy. The fused
results by the proposed method can preserve more details than
other methods, and show the usefulness of considering the
MEF problem from an information theoretic perspective. The
information of each pixel is obtained by using the luminance
distribution, being thus easy to implement. Our fused images
deliver visually compelling and promising result versus state-
of-art methods with subjective and objective comparison.

There are also some places that need to be improved. We
have used only the luminance channel, so the color information
is weakened, which explains that our fused results are a little
dimmer. We will examine the noise that can be introduced in
the uniform regions due to lacking information, and the effect
of noise in input images on the weight maps and on the fused
image.

Furthermore, we will also consider generalizing it to real-
time applications by graphics card implementation, strength-
ening it through parameter self-adaption, and making it more
interactive, allowing users to consider local region improve-
ment. Also, we will study the use of the information channel
approach to other image fusion applications, e.g. multi-focus
and multi-spectral image fusion.
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