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Abstract—These days, superpixel algorithms are widely used in
computer vision and multimedia applications. However, existing
algorithms are designed for planar images, which are less suited
to deal with wide angle images. In this paper, we present
a superpixel segmentation method for 360◦ spherical images.
Unlike previous methods, our approach explicitly considers the
geometry for spherical images and makes clustering to spherical
image pixels. It starts with the seeds defined by Hammersley
points sampled on the sphere, then iterates between assignment
step and update step, which are both based on the distance
metric respecting spherical geometry. We evaluate our method
on the transformed Berkeley segmentation dataset and panorama
segmentation dataset collected by ourselves. Experimental results
show that our method can gain better performance in terms
of adherence to image boundaries and superpixel structural
regularity. Furthermore, superpixels generated by our method can
reserve the coherence across image boundaries and all have closed
contours.

Index Terms—Superpixel, segmentation, spherical image,
panorama, clustering, Hammersley, SLIC.

I. INTRODUCTION

SUPERPIXEL generation has become a key building block
of many computer vision and multimedia applications, such

as gesture recognition [1], [2], image parsing [3], [4], depth es-
timation [5], [6], segmentation [7]–[9], object localization [10],
[11] and saliency detection [12], [13]. The core idea of su-
perpixel generation is grouping similar pixels into perceptually
meaningful atomic regions, which always conform well to the
local image structures. The pixels in each of these regions are
likely to belong to the same real world object. Hence superpix-
els provide a better spatial support for feature extraction than
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conventional rectangular windows. Another advantage of su-
perpixel generation is that it can significantly decrease the com-
putational complexity of subsequent tasks since the number of
superpixels is dramatically less than that of pixels. Respecting
the aforementioned desired properties of superpixels, a lot of su-
perpixel algorithms have been proposed in the literature. Early
methods that use pixel color statistics, e.g. mean shift [14] or the
graph based method [15], often produce superpixels of highly
irregular shape and size, which can lead to undersegmentation.
Later many researchers realize the importance of compactness
constraints [16]–[19], and propose methods to cope with un-
dersegmentation. Compactness is also used to better preserve
the spatial and topological structure of the original images [17],
[19], [20].

As a key component, superpixel generation is also widely
used in applications involving spherical (panoramic) images
[21]–[24]. Yet, in these applications existing superpixel algo-
rithms designed for planar images are simply used to produce
spherical superpixels, which may have three problems. First,
the image sphere is used to model the visual information seen
from a single viewpoint. For representation, we must flat the
image sphere and map it onto an image plane. However any
such mapping inevitably introduces perceptual distortions [25],
which will degrade the performance of superpixel algorithms.
Second, full spherical images capture 360◦ field-of-view of the
surrounding environment, which forms a closed surface. There-
fore the superpixels of a spherical image should have closed
contours when mapping to the sphere, but this is not guaran-
teed by the planar methods. Third, regular shape and size are
also preferred in spherical superpixel segmentation. Although
some planar methods are designed to generate compact and reg-
ular superpixels, e.g. SLIC [19], the uniformity would be lost
if we apply them on spherical images. All of these problems
are caused by the lack of considering the geometry for spherical
images.

In this paper, we propose a spherical superpixel generation
algorithm that effectively handles the above problems. Our
method resembles the fundamental idea of the mature SLIC su-
perpixel algorithm [19] and uses clustering to generate superpix-
els by explicitly considering the geometry for spherical images.
Specifically we first use Hammersley points [26] sampled on
sphere to initialize superpixel centers. Then, cosine dissimilarity
and spherical distance are used as the spatial distance measure
when assigning pixels and updating the superpixel centers. For
quantitative evaluation, we transform the Berkeley segmenta-
tion dataset to the spherical domain and collect a new panorama
segmentation dataset. Our method can achieve better boundary
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adherence and structural regularity on these datasets. Experi-
ments on real captured spherical images are also carried out for
visual comparison and the superior performance of our method
is validated.

The remaining of this paper is organized as follows. Section II
reviews the most related work including both planar and spher-
ical superpixel generating methods. We briefly describe the ge-
ometry for spherical images in Section III, which is followed
by the details of our algorithm in Section IV. Section V com-
prehensively evaluates the proposed method and state-of-the-art
competitors. We also discuss the influence of parameters for our
method. Section VI concludes the paper and gives the possible
directions of future work.

II. RELATED WORK

In this section, we will give the related work from two
aspects: superpixel algorithms designed for planar images
and the methods used to generate superpixels for spherical
images.

A. Planar Superpixel Algorithms

Superpixel algorithms aim to over-segment the image by
grouping similar pixels that belong to the same object. Co-
maniciu and Meer [14] apply mean shift, an iterative proce-
dure for locating local maxima of a density function, to find
modes in the color feature space of an image. Pixels that con-
verge to the same mode thus define the superpixels. However
this method is relatively slow, and can not control the amount or
size of superpixels. Felzenszwalb and Huttenlocher [15] present
a graph based image segmentation method, in which pixels are
vertices of the graph and dissimilarities between neighboring
pixels are edges. Agglomerative clustering of pixels is per-
formed such that each superpixel is the minimum spanning
tree of the graph. Their method adheres well to image bound-
aries, but produces superpixels with very irregular sizes and
shapes. The TurboPixels algorithm [16] segments an image into
superpixels by dilating a set of seed locations using geomet-
ric flow. This method can produce a lattice-like structure, and
the produced superpixels are constrained to have uniform size,
compactness, and boundary adherence. Veksler et al. [17] pro-
pose a superpixel algorithm using global optimization. In their
approach, superpixels are obtained by stitching together over-
lapping image patches such that each pixel belongs to only one
of the patches. Zeng et al. [18] describe a structure-sensitive
over-segmentation technique, which is formulated as an energy
minimization with the geodesic distance. It considers the homo-
geneity of image appearance and compactness constraints; thus
it can greatly limit under-segmentation. Achanta et al. [19] in-
troduce simple linear iterative clustering (SLIC), which adapts
a k-means clustering approach to efficiently generate superpix-
els with regular size and shapes. Starting from an initialized
superpixel partition, SEEDS [27] exchanges pixels between su-
perpixels iteratively. This algorithm defines an energy function
by enforcing homogeneity of the color distribution within su-
perpixels, which can be efficiently evaluated by hill-climbing
optimization.

B. Superpixels for Spherical Images

To generate superpixels for spherical images, existing pla-
nar superpixel algorithms are usually used directly. Cabral and
Furukawa [23] present a system to reconstruct floorplan from
images. Indoor spherical images are segmented into superpixel
[15], whose texture homogeneity is exploited for structure clas-
sification. Sakurada and Okatani [24] propose a change detec-
tion method, where superpixel segmentation of spherical images
is integrated with a low resolution change map estimated from
CNN features to get precise boundaries of the changes. To mit-
igate the effects of image distortions, spherical images can be
transformed into piecewise perspective images first, and then
superpixels are generated from these perspective images. With
this strategy, a superpixel based multi-view stereo method has
been developed in [21] to deal with panoramic sequences, which
assigns one depth per superpixel. Košecka [22] adopts a similar
idea to over-segment the panorama into superpixels. Each su-
perpixel is labeled as changed or unchanged after reconstructing
a coarse 3D model and aligning the image to the model. Despite
the success of above works, they suffer from some or all of the
problems described in the first section.

A panoramic over-segmentation algorithm is proposed in [28]
by extending the graph based method [15]. Three modifications
are made to the original algorithm to make it suitable for spher-
ical images: additional adjacency relationships between image
pixels are considered; different sizes are assigned to pixels at
different heights; a post-process is applied to remove thin su-
perpixels. The algorithm can reserve the coherence across the
boundary of spherical image, and create superpixels with closed
contours. In the preliminary conference version of this work
[29], we present a spherical superpixel segmentation method,
which is based on the idea of SLIC. Contrasted with Yang’s
method [28], it incorporates the compactness constraints and
can decrease undersegmentation. The superpixels generated by
this method also have regular shape and size.

III. GEOMETRY FOR SPHERICAL IMAGES

Our method is designed to deal with spherical images. Before
introducing the details of our algorithm, we first describe the
geometry for these images.

Equirectangular projection is used to represent the spherical
images. This projection maps meridians and circles of latitude
of image sphere to vertical and horizontal coordinates of spher-
ical image respectively. Thus the width w of spherical image is
twice the height h. For a given point [X Y Z] on the unit sphere,
the 2D image coordinates [x y] of its corresponding pixel can
be determined by two steps. First the spherical coordinates of
the 3D point is obtained by

{
θ = arctan 2(Y,X)
φ = arccos(Z)

(1)

where θ is the azimuthal angle and φ is the polar angle as shown
in Fig. 1. The function arctan 2 in the equation is the quadrant-
aware version of arctan. The 2D image coordinates [x y] on the
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Fig. 1. The geometry for spherical images: (a) we represent the spherical
image with Equirectangular projected image, whose resolution is w × h pixels;
(b) given a 3D point on the sphere (red point), we can find its corresponding
image coordinates (blue point in (a)) on the Equirectangular projected spherical
image.

Fig. 2. Sampling points on the sphere with different methods: (a) latitude-
longitude sampling (b) geodesic sampling and (c) Hammersley sampling.

spherical image plane is given by{
x = θw

2π

y = φh
π

(2)

after the range of θ is mapped from (−π, π] to [0, 2π).
The reverse transformation of the above procedure can be

used to find the corresponding 3D positions of spherical image
pixels.

IV. SPHERICAL SUPERPIXELS

Our method is an algorithm in the spirit of SLIC [19], which
adopts the k-means clustering algorithm for superpixel genera-
tion. It first initializes the cluster centers (or superpixel centers)
by sampling the unit sphere. Then it iterates between the as-
signment step, which associates each pixel to its nearest cluster
center, and the update step, which adjusts the cluster centers.
All these operations are carried out in the spherical domain to
respect the geometry of spherical images.

A. Initialization

The purpose of the initialization step is giving the seed points
for cluster centers, which is required by the following assign-
ment step. To guarantee that the seed points are uniformly
distributed on the image domain, the planar superpixel algo-
rithm [19] samples these points on a regular spaced grid. Be-
cause the polar regions of the spherical images are over sampled
as shown in Fig. 2(a), the seed points can not be sampled directly
on the equirectangular image plane. Instead in our approach the
cluster centers Ci = [Xi Yi Zi li ai bi ], i = 1, . . . , k are initial-
ized by uniformly sampling the unit sphere, where [Xi Yi Zi ] is

the 3D unit vector describing the sampling position and [li ai bi ]
is the LAB color of the spherical image pixel at the sampling
point. The LAB color space is used in our work, as it is per-
ceptually uniform [30] and is widely used in the state-of-the-art
superpixel algorithms [18], [19], [27]. Given the sampling po-
sition [Xi Yi Zi ], the image coordinate of the pixel can be
computed using (1) and (2). To avoid putting a superpixel on an
edge, we move the initial centers to the locations that have low-
est gradient in a 3 × 3 neighborhood. By using the gradient in
spherical coordinate system, the gradient of the spherical image
I is computed as

∇I =
[

1
sin φ

∂I

∂θ
,

∂I

∂φ

]
. (3)

To sample the sphere uniformly, there are two commonly
used methods. The first one is geodesic sampling in Fig. 2(b),
which is based on recursive subdivision of icosahedron. The
second method is Hammersley sampling in Fig. 2(c). The
Hammersley sampling [31] first generates Hammersley points
in 2D unit square based on the Van der Corput sequence [32].
Then these points are mapped to the unit sphere via linear scal-
ing and z-preserving radial projection. From Fig. 2 we can
see that geodesic sampling can give more uniformly distributed
sampling points. In our work, we adopt Hammersley sampling
for two reasons. First, Hammersley sampling can generate ar-
bitrary number of sampling points, while geodesic sampling
is less flexible and can only generate 5 × 22n+1 + 2 sampling
points, where n is the subdivision level. Although more sophis-
ticated geodesic sampling exists [33], the available sampling
resolutions are still restricted. The second reason is that we do
not need such uniformly distributed sampling points of geodesic
sampling. This is because these sampling points (superpixel cen-
ters) will be updated in the following iteration steps. We also
find that geodesic sampling and Hammersley sampling would
give approximately the same performance through experiment.

B. Iteration

Given initialized cluster centers, the assignment step asso-
ciates each pixel p = [X Y Z l a b]1 to its nearest cluster center.
Compared to conventional k-means clustering, where pixel p is
compared with all cluster centers Ci , our approach only consid-
ers cluster centers that are located in the neighborhood of pixel p
[19]. This is equivalent to limit the search space of each cluster
center to a region Ri of size 2S × 2S, where S is the superpixel
size. For the spherical images, we assume all superpixels have
size

S =

√
A

k
=

√
4πr2

k
=

√
4π( w

2π )2

k
=

w√
kπ

(4)

1Note that we use p to denote a pixel or its feature vector. The meaning which
one should be chosen is determined from the context.
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Fig. 3. Local search region when image coordinates fall outside of valid
range: the yellow regions represent the local search region and the black points
are superpixel centers. Note that the resolution of spherical image is 256 by 512
pixels and search region size is set as 50 pixels for illustration purpose.

where A and r are the area and radius of the sphere respectively.
For cluster i, the local search region Ri is defined as

Ri = {[x y]|xi − S

sin φ
≤ x ≤ xi +

S

sin φ
,

yi − S ≤ y ≤ yi + S}, (5)

where [xi yi ] is the 2D image coordinates for the center of
the i-th cluster computed from [Xi Yi Zi ], φ = yπ

h is the polar
angle corresponding to the y-th row of the image by the inverse
transform of (2). Since the north and south poles of image sphere
are mapped to the top and bottom boundaries of the spherical
image respectively by Equirectangular projection, the mirror
texture address mode should be used if y coordinate of the
search region is outside of the valid range. To be specific, the
search region for y becomes⎧⎪⎨

⎪⎩
0 ≤ y ≤ yi + S, if yi − S < 0
yi − S ≤ y ≤ h − 1, if yi + S ≥ h

yi − S ≤ y ≤ yi + S, otherwise.
(6)

Because the left and right boundaries of the spherical image
correspond to the same meridian, the wrap texture address mode
should be used if x coordinate of the search region falls outside
of the valid range. For example if the search region is close to
the left boundary of the spherical image, i.e. xi − S

sin φ < 0, the
range of x becomes

x ∈
[
0, xi +

S

sin φ

]
∪

[
xi − S

sin φ
+ w,w − 1

]
, (7)

and if the search region is close to the right boundary of the
spherical image, i.e. xi + S

sin φ ≥ w, the range of x becomes

x ∈
[
0, xi +

S

sin φ
− w

]
∪

[
xi − S

sin φ
,w − 1

]
. (8)

Fig. 3 shows exemplar search regions when x and y coordinates
are outside of valid ranges. Because the polar regions of the
spherical images have more distortions than the central region,
the local search region in Fig. 3(b) is stretched more seriously
than that in Fig. 3(a).

Given the definition of the local search region, the assignment
step can be achieved by the following minimization problem

L(p) = arg min
i|[x y ]∈Ri

D(Ci, p), (9)

where D(Ci, p) is the distance measure that will be discussed
in Section IV-C.

Once each pixel has been associated to the nearest cluster
center, an update step is taken to adjust each cluster center to be
the point that minimizes the sum of distances between itself and
all the pixels belonging to the cluster under distance measure
D, i.e.

Ci = arg min
Ci

Σ
L(p)=i

D(Ci, p). (10)

The assignment and update steps are repeated in turn until the
algorithm converges or some specified number of iterations is
exceeded.

C. Distance Measure

The distance measure D(Ci, p) computes the distance be-
tween cluster center Ci and pixel p. It combines color distance
dc and spatial distance ds , and is defined as

D(Ci, p) =
dc(Ci, p)

Nc
wc +

ds(Ci, p)
Ns

, (11)

where the denominators Nc and Ns are the maximum color
and spatial distances of pixels to their cluster centers after each
iteration, wc is the parameter that allows us to weigh the relative
importance between color distance and spatial distance. The
definition of color distance is the same as that of SLIC algorithm
[19]. It is given by the LAB color distance

dc(Ci, p) = (l − li)2 + (a − ai)2 + (b − bi)2 (12)

between superpixel Ci and pixel p. The spatial distance is dif-
ferent. Because the cluster centers and all the pixels are located
on the sphere, the Euclidian distance between [X Y Z] and
[Xi Yi Zi ] is not suited. In this paper, we use cosine dissimilar-
ity for spatial distance ds and term this method as Cos-SphSLIC.
Denote the angle between [X Y Z] and [Xi Yi Zi ] as α. The
cosine dissimilarity or ds can be computed as

ds(Ci, p) = 1 − cos α

= 1 − 〈[X Y Z], [Xi Yi Zi ]〉
‖[X Y Z]‖2‖[Xi Yi Zi ]‖2

= 1 − 〈[X Y Z], [Xi Yi Zi ]〉, (13)

where 〈a,b〉 is the dot product of vector a and b, and the last
equality holds due to the fact that [X Y Z] and [Xi Yi Zi ] are both
located on the unit sphere. This forms a hybrid algorithm, where
color component is the cartesian k-means clustering and spatial
component is the spherical k-means clustering [34]. Compared
with cosine dissimilarity, the spherical distance (or known as
great circle distance) is a more natural way to measure the
distance between two points on the sphere. To show whether
this widely used distance will give better performance, we adopt
another spatial distance definition

ds(Ci, p) = arccos(〈[X Y Z], [Xi Yi Zi ]〉). (14)

Our method with this distance is termed as Avg-SphSLIC, and
we will compare its performance with that of Cos-SphSLIC in
Section V.

The assignment step and update step both involve minimiza-
tion problems. The problem in assignment step can be solved
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simply by exhaustive test. Note that the above two spatial dis-
tance will give us the same assignment result as (13) and (14)
have the same montonicity with respect to Ci . The update step is
a little tricky. Because the color distance and spatial distance are
independent, we can optimize them individually. Minimization
with respect to color distance dc gives us the color component
of the new cluster center as the mean over [l a b] vectors of all
the pixels belonging to the cluster. When cosine dissimilarity is
used, the spatial part of (10) becomes

arg min
[Xi Yi Zi ]

Σ
L(p)=i

(1 − 〈[X Y Z], [Xi Yi Zi ]〉)

= arg min
[Xi Yi Zi ]

( Σ
L(p)=i

1 − 〈 Σ
L(p)=i

[X Y Z], [Xi Yi Zi ]〉)

= arg max
[Xi Yi Zi ]

〈 Σ
L(p)=i

[X Y Z], [Xi Yi Zi ]〉

=
Σ

L(p)=i
[X Y Z]

‖ Σ
L(p)=i

[X Y Z]‖2
(15)

where the last equality follows from the property of dot product
that 〈a,b〉 = ‖a‖2‖b‖2 if and only if the angle between vector
a and b is zero and the fact that [Xi Yi Zi ] is a unit vector.
Different from Cos-SphSLIC, the update step of Avg-SphSLIC
needs to find a point on the sphere such that the sum of spherical
distances between this point and the pixel positions is minimum.
Unfortunately, there is not analytic form for this problem. In this
paper, we adopt a spherical average algorithm [35], which starts
with an initial estimate and produces better estimates iteratively.

V. EXPERIMENTAL RESULTS

In this section, we first make quantitative evaluation of
our methods, SLIC [19], efficient graph based segmentation
(EGS) [15] and panorama version of EGS (PanoEGS) [28].
Then we qualitatively compare different methods. Finally, we
give their timing performance followed by a discussion about
Cos-SphSLIC and Avg-SphSLIC. All these methods are applied
on the equirectangular projected spherical images, which have
image distortions.

A. Quantitative Evaluation

1) Metrics: One of the most important properties of super-
pixels is adherence to image boundaries [19]. We use three
standard metrics to evaluate boundary adherence of different
algorithms: boundary recall [18], [36], [37], under segmen-
tation error [16], [17], [19] and achievable segmentation ac-
curacy [27], [37], [38]. In the following, we first describe
these metrics for the sake of completeness, then give their
formulation for the spherical case. For convenience, we use
G = {g1 , g2 , . . . , gm} to represent the ground truth segmenta-
tion, and use S = {s1 , s2 , . . . , sn} to represent a superpixel
segmentation.

Boundary recall (BR) measures what fraction of the ground
truth edges coincide with the boundary of superpixels. We

compute it as

BR(G,S) =

∑
p∈B (G) A(p)I(minq∈B (S) ds(p, q) < ε)

A(B(G))
,

(16)
where B(G) and B(S) are the union sets of ground truth seg-
mentation boundaries and computed superpixel boundaries re-
spectively, ds is the cosine dissimilarity in (13). Function I(·)
is an indicator function that checks whether there are super-
pixel boundaries falling within the neighborhood of ground truth
edges. A(·) is the surface area of a pixel set, whose calculation
is given in Appendix A. Compared with standard boundary re-
call, two differences are introduced in the above formula to
make this metric applicable to spherical images: first, we use
cosine dissimilarity in the neighborhood definition to account
for spherical geometry; second, the cardinality of the boundaries
set is replaced with surface area, so that the boundaries near the
polar regions will not be over-weighted.

Under segmentation error (USE) measures how many pix-
els from superpixels overlapping a ground truth segment leak
across the boundaries. It is based on the fact that a superpixel
should not overlap more than one object. Given the ground
truth segmentation and generated superpixels, we quantify the
under-segmentation error as

USE(G,S) =

∑
i(

∑
k |sk ∩gi =∅ A(sk ) − A(gi))∑

i A(gi)
. (17)

Note that the summed area of all ground truth segments∑
i A(gi) may not be equal to the surface area of sphere. This is

because the input image may not cover the full sphere, e.g. the
images from the transformed Berkeley dataset in Section V-A2.

Achievable segmentation accuracy (ASA) gives the highest
accuracy achievable when taking superpixels as units for object
segmentation. It is an upper bound measure, and is computed
as the fraction of correctly labeled pixels when labeling each
superpixel with the label of the ground truth segment which has
the largest overlap, i.e.

ASA(G,S) =
∑

k maxi A(sk ∩ gi)∑
i A(gi)

. (18)

Another important property of superpixels is structural reg-
ularity [16]–[19], which has potential advantages desired in
sequential applications [20]. In this paper, we measure the struc-
tural regularity using two metrics: compactness [39] and size
variation.

Compactness (Com) of a shape, sometimes called the shape
factor, is a numerical quantity representing the degree to which
a shape is compact [40]. A common compactness measure is the
isoperimetric quotient. In two-dimensional space, the isoperi-
metric quotient of a shape is defined as the ratio between the area
of the shape and the area of a circle having the same perimeter.
In our case, we borrow the idea from isoperimetric inequality
on the sphere [41] and define the isoperimetric quotient as

Q(sk ) =
4πA(sk ) − A2(sk )

L2(sk )
, (19)
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Fig. 4. Exemplary transformed images, ground truth segmentations and ground truth boundaries for images of 321 × 481 pixels (first row) and 481 × 321 pixels
from Berkeley Segmentation Data Set. (Note that only the meaningful part of the spherical image and the annotation is shown here.). (a) Transformed images.
(b) Ground truth segmentation. (c) Ground truth boundary.

Fig. 5. Boundary recall, under segmentation error, achievable segmentation accuracy, compactness, size variation and running time of different methods on the
transformed Berkeley dataset. Note that the vertical axis of the figure of size variation and the two axes of the figure of running time are in log scale. (a) Boundary
Recall. (b) Under-Segmentation Error. (c) Achievable Segmentation Accuracy. (d) Compactness. (e) Size variation (f) Time.

where A(sk ) and L(sk ) are the area and perimeter of super-
pixel sk respectively. In our work, L(sk ) is defined as the sum
of the spherical distance between adjacent boundary pixels of
superpixel sk . Given a segmentation, the compactness is the
weighted mean of isoperimetric quotient of each superpixel,
where weights are the areas of the superpixels, i.e.

Com(S) =
∑

k Q(sk )A(sk )∑
k A(sk )

. (20)

Size variation (SV) describes the uniformity of superpixel
size. In this paper, the size variation is defined as the variance
of superpixel areas A(sk ). For convenience, the superpixel area
is divided by the sphere size, which gives the normalized area.

2) Experiment on the Transformed Berkeley Dataset: Berke-
ley Segmentation Dataset [42] is the most commonly used
benchmark to quantitatively evaluate different superpixel al-
gorithms. This dataset contains 500 natural images that have
been manually segmented. In this section, we evaluate differ-
ent algorithms by transforming the Berkeley dataset. Specif-
ically, we use each image in the dataset as a texture to ren-
der a sphere. Then the rendered sphere is flatten to a spherical
image by equirectangular projection. To simulate the distor-
tions of spherical image, we intentionally assume each image
has 90◦ field of view and position the texture image near the
polar region of the sphere. The segmentation and boundary
ground truth of the original dataset are transformed in the same
way. Exemplar transformed images and corresponding ground
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Fig. 6. Exemplary images, segmentations and image boundaries from our panorama segmentation dataset. (a) Spherical Image. (b) Segmentation. (c) Boundaries.

Fig. 7. The performance of different methods on real panorama segmentation dataset. Note that the vertical axis of the figure of size variation is in log scale.

Fig. 8. Visual comparison of different methods on the transformed Berkeley segmentation data set.
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Fig. 9. Visual comparison of superpixels produced by various methods: (a) spherical images segmentation results of approximately 1953 and 678 superpixels,
(b) and (c) zoom-in results, (d) results mapped to the sphere. SLIC and EGS cannot reserve the coherence across image boundaries and there are noticeable seams
denoted by the arrows. The superpixels generated by SLIC in the box are stuck, because it does not consider the geometry of spherical images.

truth segmentations and boundaries are shown in Fig. 4. We
can see that the original images are stretched because of the
transformation.

Fig. 5 gives the performance of different algorithms on the
transformed Berkeley dataset. We can see that Cos-SphSLIC
and Avg-SphSLIC can obtain similar performance, which are
consistently better than that of SLIC. From Fig. 5(a) we can
get that the graph-based methods, i.e. EGS and PanoEGS, can
achieve better boundary recall than our methods and SLIC. This
is because they define a predicate for measuring the evidence for
a boundary between two regions. These two methods also get
similar performance, which reflects that the change of adjacency
relationship in PanoEGS does not have much impact on the
boundary recall of the algorithm. The under segmentation error
of each method is plotted in Fig. 5(b). Among the five methods,
our two methods have the minimum under segmentation errors.
SLIC gets better performance than EGS for this metric, which is
the same as in the planar case. When the number of superpixels
is small, PanoEGS, which assigns different weights to differ-

ent pixels, gives less under segmentation error than original
EGS. Fig. 5(c) shows the achievable segmentation accuracy of
different methods. When there are less than 100 superpixels, the
performance of graph-based methods is lower than our methods
and SLIC. This is because these two graph-based methods will
generate relatively large superpixels that across multiple ground
truth segments. When the number of superpixes exceeds 400, the
five algorithms get almost the same performance. For compact-
ness, our two methods can obtain the best performance as shown
in Fig. 5(d). Although SLIC can generate regular superpixels for
planar images, it does not consider the geometry of the spheri-
cal images and has a little lower performance than our methods.
Because EGS and PanoEGS do not offer an explicit control over
the amount of superpixels or their compactness, they offer the
worst performance. Fig. 5(e) shows the superpixel size variation
of different methods, which illustrates that our method can gen-
erate more uniformly sized superpixels. The two graph-based
methods do not consider the spatial relationship between pixels,
and generate irregular shaped superpixels.
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Fig. 10. Visual comparison of superpixels produced by various methods: (a) spherical images segmentation results of approximately 1875 and 524 superpixels,
(b) and (c) zoom-in results, (d) results mapped to the sphere. SLIC and EGS cannot reserve the coherence across image boundaries and there are noticeable seams
denoted by the arrows. The superpixels generated by SLIC in the box are stuck, because it does not consider the geometry of spherical images.

3) Experiment on Panorama Segmentation Dataset: The
widely known spherical image dataset is SUN360 [43], which
is initially constructed for scene recognition problem. SUN360
dataset contains 360◦ × 180◦ panoramas without annotations,
so it can not be used. Although Zhang et al. [44] have released
a panorama dataset with annotations, these annotations are not
fine enough for evaluation purpose. As each spherical image
captures all the surrounding environment, constructing spheri-
cal image segmentation benchmark is really a challenging task.

In this work, we have collected a small panorama segmen-
tation dataset. This dataset contains 12 annotated panoramas,
some of which is shown in Fig. 6. We then apply different meth-
ods on this dataset and compute their performance. From Fig. 7
we can see that the result is similar to that of the experiment on

the transformed Berkeley dataset, except that PanoEGS gets the
best under segmentation error performance. We think this may
be due to the fact that the annotations of our dataset are not as
fine as those of Berkeley dataset and the capacity of our dataset
is much smaller.

B. Qualitative Comparison

Fig. 8 gives the qualitative comparison of different algorithms
on the transformed BSD dataset. We can see our method can
achieve a little better boundary adherence than SLIC. Although
graph-based methods, i.e. EGS and PanoEGS, can produce su-
perpixels that adhere more tightly to image boundaries, these
superpixels have less regular size and shape. In contrast, our
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Fig. 11. The comparison of Cos-SphSLIC with different weight parameters: the quantitative performance (top) and one exemplary segmentation result (bottom).

two methods and SLIC can generate superpixels with nearly the
same size.

To more thoroughly compare different methods, we select
full 360◦ panoramas from SUN360 dataset [43]. Figs. 9 and 10
give two exemplar images, which are segmented into different
number of superpixels with various methods. Due to explicit
consideration of the geometry for spherical images, the super-
pixels generated by our method appear to be larger if they are
closer to the top or bottom boundary of the spherical image. This
agrees with the fact that the polar region of spherical image is
over sampled and has more distortions. Because the polar region
does not have many details, our method can get similar perfor-
mance to SLIC with fewer superpixels as shown in the zoom-in
images. Contrasted with polar region, more superpixels are ex-
tracted for central region by our method and better performance
is achieved than SLIC. This explains why our method can get
higher boundary recall than SLIC. To show another advantage
of our method, we map the superpixel segmentation result to
the image sphere as shown in Figs. 9(d) and 10(d), in which
each superpixel is represented by a random color. The sphere is
rotated so that we can see the south pole of the image sphere and
the meridian corresponding to the left and right boundary of the
spherical image. The mapped results show that the planar algo-
rithms can not reserve the coherence across image boundaries
and there are noticeable seams, which are denoted by arrows.
And the superpixels near the polar region are stuck together af-
ter the segmentation results are mapped to the sphere. Another
fact we can get is that our method can produce the most regular
spherical superpixels. Even if the result of SLIC appears to be
more regular on the equirectangular projected images, the su-
perpixels are stretched on the sphere, such as the region bounded
by the box.

C. Timing Performance

To compare the speed of different methods, we segment im-
ages of increasing size on a computer with Intel 2.50 GHz CPU
and 8 GB RAM. For the images of each size, approximately
the same number of superpixels are generated by each method.
In our experiment, we produce about 50, 200, 800, 3200 and
12800 superpixels for spherical images with resolution 256 ×
128, 512 × 256, 1024 × 512, 2048 × 1024 and 4096 × 2048

pixels respectively. The time values are averaged over 10 runs.
In Fig. 5(f), we plot the running time required for the various
methods to produce different number of superpixels. Theoreti-
cally, Cos-SphSLIC has the same complexity as SLIC. However,
it takes more running time, because it involves the time consum-
ing trigonometric functions in the assignment and update steps.
The update step of Avg-SphSLIC is essentially an optimization
algorithm, hence its running time is longer. EGS and PanoEGS
are slower than SLIC, while faster than Cos-SphSLIC. Note
that PanoEGS is a little slower than EGS. This is because it in-
cludes additional adjacency relations compared with EGS, and
a post-process is applied to remove thin superpixels.

Although we have proposed two distance measures in
Section IV-C, we can see that these two methods have almost the
same performance from Fig. 5(a)–(e). However Avg-SphSLIC
takes much more time to adjust the cluster center than Cos-
SphSLIC as shown in Fig 5(f). Therefore, although the spherical
distance is a more natural measure for the distance between two
points on the sphere, we always use Cos-SphSLIC in practice.

D. Discussion

As shown in (11), our method has a parameter wc , which can
be used to adjust the importance between color similarity and
spatial proximity. To investigate the effect of this parameter, we
additionally test the quantitative performance of Cos-SpSLIC
when wc equals 0.5 and 2.0. Fig. 11 gives the comparison of
Cos-SphSLIC with different parameters. From the figure we
can see that a larger parameter gives better image boundary ad-
herence, i.e. higher boundary recall, lower under-segmentation
error and higher achievable segmentation accuracy. However it
also sacrifices structural regularities, and gets lower compact-
ness and higher superpixel size variance. Another fact we can
get is that although boundary recall becomes higher when we
use a relatively larger wc , the under-segmentation error does not
increase correspondingly. This is different from the behavior of
graph-based superpixel segmentation methods. The main reason
is there is spatial component in our distance measure, which can
prevent from generating very large or small superpixels. Exem-
plary segmentation results on the transformed Berkeley dataset
using different parameters are also given in Fig. 11.
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VI. CONCLUSION

In this paper, we propose a superpixel segmentation algorithm
for spherical images, which explicitly considers the geometry
for the spherical images. Our approach initializes the superpixel
centers using Hammersley points sampled on the sphere and
takes cosine dissimilarity as the spatial part of distance measure
when assigning each pixel to its nearest superpixel and up-
dating the superpixel centers. For quantitative evaluations, we
warp the images of widely used Berkeley segmentation dataset
and transform them to spherical ones. We also collect a small
panorama segmentation dataset. Experimental results show that
our method can get better performance in terms of boundary ad-
herence and structural regularities. Our method can also reserve
the superpixel coherence across image boundaries and generate
closed superpixel segments.

Because of the properties of spherical superpixels, we will
investigate the application of spherical superpixels in the field
of image based rendering [45] and 3D reconstruction [46] in
the future. Another direction of future work involves collecting
a large and more fine-grained panorama segmentation dataset,
which is suitable for quantitative evaluation of spherical super-
pixel algorithms.

APPENDIX A
THE AREA OF PIXEL SET

Given a sphere of radius r, the surface area of a quadrangle
bounded by the parallels φ1 and φ2 and the meridians θ1 and θ2
can be obtained by integration∫ θ2

θ1

∫ φ2

φ1

r2 sin φdθdφ = r2(cos φ1 − cos φ2)(θ2 − θ1).

(21)
For the equirectangular projected spherical image, each pixel
p is a quadrangle bounded by the parallels φ1 = yπ

h and φ2 =
(y+1)π

h and the meridians θ1 = 2xπ
w and θ2 = 2(x+1)π

w , where
[x y] is the coordinate of the pixel and [w h] is the resolution of
the image. According to (21), the surface area of pixel p then is

A(p) = r2
(

cos
yπ

h
− cos

(y + 1)π
h

)
2π

w
. (22)

Correspondingly, the area of segment gi and superpixel sk is
A(gi) =

∑
p∈gi

A(p) and A(sk ) =
∑

p∈sk
A(p) respectively.
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