Available online at www.sciencedirect.com
APPLIED

ScienceDirect MATHEMATICS
COMPUTATION

ELSEVIER Applied Mathematics and Computation 190 (2007) 1848-1854

www.elsevier.com/locate/amc

Computational efficiency analysis of Wu et al.’s fast
modular multi-exponentiation algorithm

Da-Zhi Sun **, Jin-Peng Huai °, Ji-Zhou Sun ¥, Jia-Wan Zhang *

& School of Computer Science and Technology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, PR China
b School of Computer, Beihang University, Beijing 100083, PR China

Abstract

Very recently, for speeding up the computation of modular multi-exponentiation, Wu et al. presented a fast algorithm
combining the complement recoding method and the minimal weight binary signed-digit representation technique. They
claimed that the proposed algorithm reduced the number of modular multiplications from 1.503k to 1.306k on average,
where the value & is the maximum bit-length of two exponents. However, in this paper, we show that their claim is unwar-
ranted. We analyze the computational efficiency of Wu et al.’s algorithm by modeling it as a Markov chain. Our main
result is that Wu et al.’s algorithm requires 1.471k modular multiplications on average.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Modular multi-exponentiation; Complement recoding; Minimal weight binary signed-digit (BSD) representation; Computa-
tional efficiency; Markov chain

1. Introduction

The computation of modular multi-exponentiation for large positive integer operands is required in many
important applications in computer science and engineering. However, it is also a very time-consuming arith-
metic operation, which requires a great deal of processing steps. Therefore, a significant problem is how to
reduce the time needed to perform a modular multi-exponentiation operation. Many researchers have
addressed this problem. For modular multi-exponentiation 4*B" (mod N), assume the value k is the maximum
bit-length of two exponents X and Y, i.e. k = [log, max(X, Y)]. Consider the average case. Pekmestzi’s algo-
rithm [1] uses 1.75k modular multiplications. Directly employing the minimal weight binary signed-digit
(BSD) representation technique, Dimitrov et al.’s algorithm [2] requires 1.556k modular multiplications. Since
there are many optimal BSD representations between X and Y, Dimitrov et al.’s algorithm can further reduce

* Corresponding author.
E-mail addresses: sundazhil977@126.com, sundazhi@tju.edu.cn (D.-Z. Sun).

0096-3003/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.amc.2007.02.066

mailto:sundazhi1977@126.com
mailto:sundazhi@tju.edu.cn

D.-Z. Sun et al. | Applied Mathematics and Computation 190 (2007) 18481854 1849

to 1.534k modular multiplications with eight reduction rules [2]. Solinas’s algorithm [3] using the joint sparse
form needs 1.503k modular multiplications.

Very recently, for speeding up the computation of modular multi-exponentiation, Wu et al. [4] presented a
fast algorithm combining the complement recoding method and the minimal weight BSD representation tech-
nique. They claimed that their algorithm required only 1.306k modular multiplications on average. However,
in this paper, we show that their claim is unwarranted. We analyze the computational efficiency of Wu et al.’s
algorithm by modeling it as a Markov chain. Our main result is that Wu et al.’s algorithm requires 1.471k
modular multiplications on average.

The remainder paper is organized as follows. We introduce some background knowledge in Section 2. In
Section 3, we review the related modular multi-exponentiation algorithms. In Section 4, we analyze the com-
putational efficiency of Wu et al.’s algorithm using a Markov chain. Finally, brief conclusions are given in
Section 3.

2. Preliminaries
2.1. Minimal weight BSD representation

Definition 1. If £ = Y5 d,2" where d; € {0,1,—1} for i =0,1,...,k, then (dy ...d do)gsp is called a BSD
representation for the integer E. (dy...d1do)gsp 1S said to the minimal weight BSD representation
(di...d1do)pwesp If the representation has the smallest number of non-zero bits among all BSD
representations.

Let E be positive integer whose binary representation is (exriex . . .e1ep), wWith e;1 = e = 0. Menezes et al.
[5] summarized an algorithm to recode an exponent to the minimal weight BSD representation, as depicted in
Fig. 1.

2.2. Complement recoding method

In 2003, Chang et al. [6] proposed a method to reduce the Hamming weight of the exponent
E = (e4-1 . ..e1ep),. Performing complement is perhaps advantageous in the speedup of the exponential com-
putation. The equation is shown as follows:

k—1
E:Zei2i:2k—F—1, (1)
i=0

e_j:(), ifel-:1 .
=1 ife=o Ori=k-L..10

For example, E = 249 = (11111001), = 2° — (00000110), — 1 =256 — 6 — 1.

where E = (g, ---e1eg), and {

Algorithm A
Input :a positive integer E = (e, e, e,_, *-€,e,), Withe,,, =¢, =0.
Output :a minimal weight BSD representation (d, ---d,d,,) yyss» for E.
l.c, =0;
2.For i from0 to k do the following :

2.1 ¢, =|(e, +e,, +c)I2}

22 d,=e +c,—2c,,;
3.Return (d, ---d\d) yywssp -

Fig. 1. Minimal weight BSD exponent recoding.

1850 D.-Z. Sun et al. | Applied Mathematics and Computation 190 (2007) 1848-1854
3. Review of two modular multi-exponentiation algorithms
3.1. Dimitrov et al.’s algorithm without reduction rules

To compute modular multi-exponentiation 4*B" (modN), Dimitrov et al.’s algorithm without reduction
rules can be described as Fig. 2. It is the basic modular multi-exponentiation algorithm using the minimal
weight BSD representation technique.

Assume two exponents X and Y with uniform distribution. The expected average number of modular mul-
tiplications is 14k/9 ~ 1.556k [2].

3.2. Wu et al.’s algorithm

Wau et al. proposed a new modular multi-exponentiation algorithm. The main idea is to integrate the com-
plement recoding method into Dimitrov et al.’s algorithm without reduction rules. Wu et al.’s algorithm can
be depicted in Fig. 3. In [4], the original description of the transforming operations is X = —(X)ywpsp and
Y = —(¥)ywesp for the complement recoding method. But the representations of the values —(X)yweso
and —(Y)ywesp seem to be obscure. According to their design purpose, we make slight modifications in
the corresponding steps. It has no any effect on the following computational efficiency analysis of Wu
et al.’s algorithm, since the cost of those alterations is negligible.

4. Analysis of Wu et al.’s algorithm using Markov chain

We focus on the computational efficiency of Wu et al.’s algorithm, which combines the complement recod-
ing method and the minimal weight BSD representation technique. Similarly to [4], assume all computations
of values Azk(modN),sz (modN),Aszzk(modN) in Step 2 of Algorithm C are free. As a matter of fact, this
requirement on Wu et al.’s algorithm restricts the application environments and increases extra overheads,
compared with Dimitrov et al.’s algorithm without reduction rules.

Since two exponents are independently processed by Wu et al.’s combination strategy, we firstly discuss an
arbitrary exponent E passing from Step 3 to Step 5 in Algorithm C. Let Ham(E) be the Hamming weight of
E = (e ...ee),. Clearly, the function of the complement recoding method, i.e. Step 4 of Algorithm C, can
be regarded as

Ham(£) k —Ham(E), if Ham(E) > %,)
am(E) =
Ham(E), if Ham(E) <%.
Algorithm B

Input : the parameters A, B, N, X, Y.
Output : the result C = A* B" (mod N).
1. k =[log, max(X,Y) |,
2.Recode X, Y to minimal weight BSD representations
X =X XX wwasp > ¥ = (Ve Yo Y150 wwssp s
3.Compute and store A~ (mod N), B (mod N), A" B(mod N), AB™ (mod N),
A™'B™'(mod N), AB(mod N);
4.C=A%B" (modN);
5.For i from k—1 to 0 do the following :
5.1 C=CC(modN);
52 If (x;,y,)#(0,0) then C=CA"B" (modN);
6.Return C.

Fig. 2. Dimitrov et al.’s algorithm without reduction rules.

D.-Z. Sun et al. | Applied Mathematics and Computation 190 (2007) 1848-1854

Algorithm C

Input : the parameters 4, B, N, X, Y.

Output : the result C = 4* B" (mod N).

1.k = ﬂog2 max (X, Y)—|;

2.Precompute and store 4 2 (mod N), B* (mod N), A B (mod N);

3. Count the Hamming weights of X and Y,denote as Ham(.X') and Ham(Y);

4.IfHam(X)>§ then X =X, A=A"(modN), HW, =1 else HW, =0;

IfHam(Y)>§ then Y:I?,B:B‘l(modN),HWy =1 else HW, =0;

5.Recode X, Y to minimal weight BSD representations
X=X, apsp s ¥ =V V1Y) smmso >
6. Compute and store A~ (mod N), B~ (mod N), 4~ B(mod N), AB™' (mod N),
A7 B (mod N), AB(mod N);
7. C =A™ B (mod N);
8.For i from k —1 to 0 do the following :
8.1 C=CC(modN);
8.2 If (x,,y,)#(0,0) then C=CA" B’ (modN);,
9. If (HW,, HW,)# (0,0) then C = A4>""B>"" C4" B" (mod N);
10. Return C.
Fig. 3. Wu et al.’s algorithm.

1851

Let P(EV) denote the probability that the event EV occurs. Before the complement recoding, each bit of
E = (ef-1...e1e9), assumes a value of 0 or 1 with equal probability, i.e. P(e; =0) = P(e; =1) =1/2 for
0 <i<k—1, and there is no dependency between any two bits. After the complement recoding, it should
be a value of 0 or 1 with unequal probability, i.e. P(e; =0) =3/4 and P(e; = 1) = 1/4for 0 < i< k — 1. Cer-
tainly, there is still no dependency between any two bits.

Consider the minimal weight BSD representation of £ = (e,_; ... ejep),, which has been transformed by the
complement recoding method. According to Algorithm A, Table 1 [5] can list all possible inputs to the ith iter-
ation of Step 2, and the corresponding outputs.

We can get the following simple facts:

33 9
P((ei7ciaei+lvci+l) = (0707070)|dl = 0) = P((eiaei+l) = (070)) = Z Z = EJ (3)
31 3
P((€i70i,€i+17ci+1) = (0,0, 170)|di = 0) = P((enefﬂ) = (0, 1)) = 44 = 16’ (4)
13 3
P((ei7ci7ei+1aci+1) = (17 1707 1)|dl = 0) :P((eiaei+1) = (170)) = ZZ zﬁa (5)
Table 1
Minimal weight BSD exponent recoding
Inputs
e; 0 0 0 0 1 1 1
¢ 0 0 1 1 0 0 1
eirl 0 1 0 1 0 1 0
Outputs
Citl 0 0 0 1 0 1 1
d; 0 0 1 -1 1 -1 0

1852 D.-Z. Sun et al. | Applied Mathematics and Computation 190 (2007) 1848—1854

11 1
P((eiaciaei+1;ci+l) (1717171)|d 0):P((ehei-H):(171)):ZZ:Ea (6)
P((eis1;ci1) = (0,0)|d; = 1)
:P(((eivciﬂeHlacHl) = (07 17070) U (170»070))|dl = 1) = 13 (7)
P((ei1,cin) = (1, 1)|d; = —1)
— P(((es, cir e cinn) = (0,1,1,1) U (1,0,1,1)|d; = —1) = 1. (8)

In order to compute the averages of non-zero and zero bits, which potentially represent the number of mod-
ular multiplications, we can model the minimal weight BSD representation method using a Markov chain. In
this situation, we define state variable S of the Markov chain is 0, 1, 2, when a bit 0, 1, —1 is formed using
Algorithm A. The probability that state S =i for i =0, 1,2 succeeds state S = j for j =0, 1,2 is denoted by
p;;- We have:

Poo = P(dis1 =0|d; = 0)

= P(((eix1,¢is1) = (0,0)|d; =0) Ne;1n = 0)
+ P(((eir1,¢i01) = (0,0)]d; = 0) Nerp = 1)
+ P(((eir1,ci01) = (1, 1)|d; = 0) Nejyr = 1)
+ P(((eiy1,¢i01) = (1, 1)|di =0)Neyn = 0)

= P((ei, ¢, eiv1,¢i01) = (0,0,0,0)|d; = 0)P(e;12 = 0) 9)
+ P((e;, ciyeirr,civ1) = (0,0,0,0)|d; = 0)P(enn = 1)
+ P((ei, cieivrs civr) = (1, 1, 1, 1)|d; = 0)P(es2 = 1)
+ P((er, iy eiv1; cinn) = (1,1, 1,1)[d; = 0)P(ei = 0)

93 91 13 11
“ 1647164 164 164
Poi :P(di+l = 1|d1‘:0)
= P(((ers1,¢101) = (1,0)ld; = 0) Neyyz = 0)
+ P(((eis1,¢iv1) = (0, 1)|d; = 0) Neiyr = 0)

)

5
8

= P((e;,cireir1,¢i41) = (0,0,1,0)|d; = 0)P(e;2 = 0) (10)
+ P((es; ciy €1, civn) = (1,1,0, 1)|d; = 0)P(ei2 = 0)
33 339

“T64 164 32
Py = P(din1 = —1|d; = 0)
= P(((eir1,ci1) = (1,0)[d; = 0) Nejn = 1)
+ P(((eis1,¢i01) = (0, 1)|di =0)Neyn = 1)

= P((ei, ¢, eiv1, ¢iv1) = (0,0,1,0)|d; = 0)P(ei2 = 1) (11)
+P((e;,ci,e;+1,ci+1) = (l, 1,0, l)|d, = O)P(e,-+2 = 1)
31,313

“T64 164 32
pio = P(di1 =0ld; = 1)
= P(((eir1,¢i41) = (0,0)|d; = 1) Neyn = 0)
+ P(((eir1,¢i01) = (0,0)]di = 1) Ner = 1)
— P((er1, 1) = (0,0)|d; = 1)P(es2 = 0) (12)

D.-Z. Sun et al. | Applied Mathematics and Computation 190 (2007) 18481854 1853

+ P((ei+1,¢i01) = (0,0)|d; = 1)P(eir2 = 1)

31 1
T4 +4 ’
Pro = P(diy1 = 0ld; = —1)
= P(((eir1,civ1) = (1, 1)[di = —=1) Nepo = 0)
—I—P(((e,H,c,H) = (1, 1)|d = —1) ﬁe,-+2 = 1)
:P((et+1acl+1) (171)|dt: 1)P(€,+2:0) (13)
+ P((eir1,¢i1) = (1, 1)|d; = =1)P(ei2 = 1)
R
4+4’
P =P =Py =pPn=0. (14)
Hence, the one step transition probability matrix of Wu et al.’s combination strategy is given as
Poo Po1 Po % % 3%
TPMwuy et als strategy — | Pro P P2 | = 1 0 0f. (15)
P Pu Pn 1 0 0

Let p;(k) for j =0,1,2 denote the k-step transition probability of state j. When k — oo, the laws of the
Markov chain imply the following equations:

Po(00) + py(00) + py(o0) = 1, (16)
PooPo(00) + p1op1 (00) + paypr(00) = %po(oo) + p1(00) + py(00) = py(00), (17)
Puupa(09) + Py (0) + paypa(o0) = 3 pal(00) = py (50). (18)

We can obtain the solution py(co) = 8/11, p,(c0) = 9/44, p,(c0) = 3/44 from Egs. (16)—(18). It means
that the averages of non-zero and zero bits using Wu et al.’s combination strategy can be counted by
(1, (00) 4 py(00))k = (9/44 4 3/44)k = 3k/11 and py(oo)k = 8k/11.

For modular multi-exponentiation 4*BY (modN) in Algorithm C, we also assume two exponents X and Y
with uniform distribution. Since (8/1 I)Zk of the pairs {(x;,¥,),i =0,1,...,k — 1} after Wu et al.’s combination
strategy are expected to be (0, 0) on average, their algorithm requires 2k — (8/ 11)2k = 178k/121 =~ 1.471k
modular multiplications.

5. Conclusions

When the computational cost related the complement recoding method is omitted, we analyze the compu-
tational efficiency of Wu et al.’s fast modular multi-exponentiation algorithm using a Markov chain. Although
it combines the complement recoding method and the minimal weight BSD representation technique, Wu
et al.’s algorithm at most requires up to (14k/9 — 178k/121)/(14k/9) =~ 5.4% fewer modular multiplications
than Dimitrov et al.’s algorithm, which merely uses the minimal weight BSD representation technique.

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant No. 60673196
and the Applied Foundation Research Project of Tianjin under Grant No. 60673196.

References

[1] K. Pekmestzi, Complex number multipliers, IEE Proceeding-Computers and Digital Techniques 136 (1) (1989) 70-75.

[2] V.S. Dimitrov, G.A. Jullien, W.C. Miller, Complexity and fast algorithms for multiexponentiations, IEEE Transactions on Computers
49 (2) (2000) 141-147.

[3] J.A. Solinas, Low-weight binary representations for pairs of integers. Available from: <http://www.cacr.math.uwaterloo.ca/
techreports/2001/tech_reports2001.html>.

http://www.cacr.math.uwaterloo.ca/techreports/2001/tech_reports2001.html
http://www.cacr.math.uwaterloo.ca/techreports/2001/tech_reports2001.html

1854 D.-Z. Sun et al. | Applied Mathematics and Computation 190 (2007) 1848-1854

[4] C.L. Wu, D.C. Lou, J.C. Lai, T.J. Chang, Fast modular multi-exponentiation using modified complex arithmetic, Applied
Mathematics and Computation, in press, doi: 10.1016/j.amc.2006.08.051.

[5] A. Menezes, P. van Oorschot, S. Vanstone, Handbook of Applied Cryptography, CRC Press, Boca Raton, 1997, p. 628.

[6] C.C. Chang, Y.T. Kuo, C.H. Lin, Fast algorithms for common multiplicand multiplication and exponentiation by performing
complements, in: Proceedings of 17th International Conference on Advanced Information Networking and Applications, IEEE
Computer Society, 2003, pp. 807-811.

	Computational efficiency analysis of Wu et blank al. " s fast modular multi-exponentiation algorithm
	Introduction
	Preliminaries
	Minimal weight BSD representation
	Complement recoding method

	Review of two modular multi-exponentiation algorithms
	Dimitrov et blank al. ' s algorithm without reduction rules
	Wu et blank al. ' s algorithm

	Analysis of Wu et blank al. ' s algorithm using Markov chain
	Conclusions
	Acknowledgments
	References

