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ABSTRACT

As the increasing popularity of superpixel-based applications,

measuring superpixel-level similarity becomes an important

and commonly required problem. In this paper, we propose a

general bag of squares (BoS) model for such particular pur-

pose. Compared to existing methods, our approach provides

a full scheme to both invariantly represent superpixels and ac-

curately measure their pairwise similarities. In order to han-

dle the split-and-merge variety of superpixels of same objects

in different scenes, our model is based on superpixel pyra-

mid. As a result, the BoS model of a superpixel is built upon

a group of subregions consisting of the superpixel itself and

its children subregions in the pyramid. For each subregion,

we extract a proper number of maximum squares via distance

transform, and then use a fast self-validated approach to clus-

tering them into a small number of dominant squares, which

together with a rotation and scale invariant square descriptor,

jointly compose the BoS model for the particular superpixel.

Finally, we measure the similarity between a pair of superpix-

els by the closeness of their BoS models. Experiments on in-

teractive object segmentation and co-saliency detection show

that the proposed BoS model can reliably capture the delicate

differences among superpixels, thus always producing better

segmentation results, especially for segmenting highly variant

objects in clutter scenes.

Index Terms— Bag of Squares (BoS), superpixel-level

similarity, scale and rotation invariance, image segmentation

1. INTRODUCTION

Superpixels [1] are perceptually meaningful irregular subre-

gions of an image, which are usually generated by grouping

neighboring pixels with similar appearances [2, 3]. Recent-

ly, many algorithms in computer vision and image processing

* is the corresponding author. Email: wfeng@tju.edu.cn. This

work is supported by NSFC (61100121), the Program for New Century

Excellent Talents in University (NCET-11-0365), the National Science and
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Fig. 1. BoS model of superpixels. (a)-(d) show the BoS rep-

resentations for the SLIC superpixels [2] of two images with

same foregrounds. In (a) and (c), the superpixels labeled as

1 and 2 correspond to the hair of two little girls, respectively.

But, the same objects are separated into quite different num-

ber of superpixels with very different shapes and spatial con-

nections in the two scenes. This is the split-and-merge variety

property of superpixels. Superpixels labeled as 3 indicates the

multiple appearances property of superpixels.

use superpixels, instead of the original pixels, as the atom-

ic primitives, e.g. object segmentation and detection [4, 5],

tracking [6], and cosegmentation [7]. This is mainly because

that using superpixels can significantly reduce the complexi-

ty of computation while maintaining comparable, sometimes

even better, precision than using pixels [8].

One key problem in superpixel-level applications is how

to reliably measure the similarity between two superpixels.

However, most previous superpixel-related work mainly fo-

cuses on superpixel generation [2, 3] or its applications in

different vision problems [1, 5, 7]. For similarity measur-

ing, superpixels are simply treated as common image region-

s that are described using state-of-the-art regional features,

such as regional histogram [4], region covariance [8], GMM



and SPM [7], and the similarity of a pair of superpixels are

just measured as the closeness of their corresponding region-

al features. In spite of the reasonable performance of such

method in some applications, it ignores the peculiarities of

superpixels that may lead to the failure of common regional

features in measuring superpixel-level similarities.

As shown in Fig. 1, compared to regular image regions,

superpixels have the following three distinct properties: (1) ir-

regularity, i.e. superpixels of an image may have very differ-

ent sizes and shapes, (2) split-and-merge variety, i.e. the same

object in two images may correspond to different number of

superpixels with very different sizes, shapes and spatial con-

nections, (3) multiple appearances, i.e. although superpix-

els are generally homogeneous subregions, some superpix-

els may have multiple homogeneous appearances. Although

there are a number of successful regional image features, none

of them are specifically designed for describing superpixels

and catering the above three peculiarities.

In this paper, we propose a general bag of squares (BoS)

model, which includes both BoS detector and BoS descrip-

tor, to faithfully represent superpixels and accurately measure

their pairwise similarities. Fig. 2 shows the algorithm flow of

the proposed BoS model, which is based on superpixel pyra-

mid that allows us to handle the split-and-merge variety of su-

perpixels. Specifically, the BoS model of a superpixel is built

upon a group of subregions that includes the superpixel itself

as the root and its all children subregions in the superpixel

pyramid. For each subregion, we extract a proper number

of maximum squares via distance transform, and then use a

fast self-validated approach to clustering them into a suitable

but much smaller number of dominant squares. We use these

dominant squares to represent a superpixel that enable us to

capture multiple delicate homogeneous appearances in the su-

perpixel. We then present a rotation and scale invariant square

descriptor to finalize the BoS model. At last, the superpixel

level similarity is measured as the closeness of correspond-

ing BoS models. We have tested the performance of our BoS

model on interactive object segmentation and co-saliency de-

tection. Extensive results show that the proposed BoS model

can reliably capture the delicate differences among superpix-

els, thus can always produce better accuracy, especially for

highly variant objects in clutter scenes.

2. BAG OF SQUARES DETECTOR

As shown in Fig. 1, the BoS model regularly represents the ir-

regular superpixels by variant numbers of dominant squares.

In this section, we introduce the three major steps to efficient-

ly extract such dominant squares that captures the multiple

delicate appearances of superpixels and allows the usage of

regular region descriptors.

Superpixel pyramid. As shown in Fig. 2, for a given

image, we first generate an L-level superpixel pyramid by re-

vising the SLIC algorithm [2].

Using a desired superpixel number K as input, SLIC ini-

tializes clusters by sampling K regularly spaced cluster cen-

ters and gradually moving them to locations with locally low-

est gradient magnitude. Next, in the assignment step, each

pixel i is associated with the nearest cluster center. Once all

the pixels have been associated with the nearest cluster cen-

ter, an update step is used to adjust the cluster centers to be the

mean feature vector of all the pixels belonging to the cluster.

Finally, a post-processing step is used to enforce connectivity

by re-assigning disjoint pixels to nearby largest neighboring

cluster. At the end of this process, we add a label mask M
to enforce the same label covered pixels belonging to a same

cluster. Within the pyramid, level i + 1 contains more super-

pixels than level i, and all superpixels of level i + 1 exactly

obey the superpixel boundaries of level i.
To generate a superpixel pyramid, we first produce level

1 superpixel segmentation P1 by standard SLIC algorithm.

Given superpixels segmentation Pi of level i as label mask

M and the number of superpixels Ki+1 (Ki+1 > Ki), we

generate the superpixels Pi+1 of level i+1 by examining the

belonging relationship of the initial regular seeds of Pi+1 to

the superpixel labels of Pi. At level i + 1, every initial seed

may produce a superpixel containing only the pixels having

the same label with the initial seed. Note, this method is able

to generate superpixel pyramid via other regular seeds based

superpixel algorithms, e.g. TurboPixel [3].

Regional maximum squares extraction. To handle the

superpixel peculiarities, our BoS model is constructed for su-

perpixels on the 1st level in the pyramid; and for each super-

pixel of the 1st level, we use all its children superpixels in the

pyramid and itself as source subregions to extract a number of

candidate maximum inscribed squares (or maximum squares

for short). Our BoS model is based on the maximum squares

of a subregion, since they are regular and maximally cover the

appearance of the subregion. As shown in Fig. 2, for a subre-

gion, we approximately extract its maximum square through

the distance transform [9]. Since the distance map indicates

the minimal distance from each pixel to the region boundary,

we only need find the pixel with maximal distance value and

use it as center and the distance value as radius to construc-

t the maximum square. Note that, this solution is of linear

complexity, thus is very fast. By subtracting the extracted

maximum square, we can recursively extract a proper number

of maximum squares from the given subregion.

Square main direction extraction. We use a simple

moment-based method to extract the main direction of a

superpixel square that is commonly used in feature detec-

tion [10]. For a particular square, we first compute its

moment-based intensity centroid as

C =
(
M10/M00,M01/M00

)
, (1)

where Mij is the intensity moment in the square defined as

Mij =
∑

x,y

xiyjI(x, y). (2)
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Fig. 2. Algorithm flow of the bag of squares (BoS) model and the BoS based superpixel-level similarity measurement.

From the square centroid C, we obtain its main direction as

θ = tan−1(
m01

m10
). (3)

In our implementation, all the moments in Eq. (2) are com-

puted within the circumscribed circle region.

Dominant squares clustering. Now, for a superpixel P ,

we have a number of candidate maximum squares Cp . As

shown in Fig. 2, we sort CP = {C0, · · · , Cn} in a descendant

order according to their sizes. The dominant squares SP =
{S0, · · · , Sn} of superpixel P are selected from CP by the

following self-validated clustering process [11]. First, S0 =
C0, i.e. the largest candidate square is a dominant square,

and its corresponding weight w0 is initialized as 1. Then, for

the candidate square Ci in CP , we compare its similarities to

all dominant squares in SP with its similarity to the farthest

sample of SP , denoted by S̄ , in the feature space. If Ci is

closer to S̄ than to any dominant squares in SP , we add Ci

as a new dominant square into SP with corresponding weight

1; otherwise, Ci is clustered into the closest square in current

SP by increasing the corresponding weight by 1.

As introduced in Sec. 3, we describe a single dominant

square S using a sparse histogram. Thus, in the space of his-

tograms, we can approximate the farthest sample of a domi-

nant square S with sparse histogram as

S̄ =
1− S

m− 1
(4)

where m is the number of bins in the square histogram.

Hence, in the histogram space, we can approximate the most

impossible sample S̄ of current dominant squares SP as

Smean, where Smean represents the mean sparse histogram

of all dominant squares in SP .

3. BAG OF SQUARES DESCRIPTOR

The BoS model of a superpixel P is a weighted set of domi-

nant squares,

BP = 〈SP ,WP 〉 (5)

where SP is the set of dominant squares, and WP =
[w0, · · · , w|SP |]T is the weight vector denoting the impor-

tance of corresponding dominant squares. We now introduce

an invariant descriptor for the BoS model, and based on which

how to measure superpixel-level similarity.

Dominant square descriptor. As shown in Fig. 2, we

further represent a single dominant square as a set of evenly

distributed concentric bands, each of which is a regular region

and can be accurately described using the quantized color his-

togram H that uses 16 bins to quantize each color channel,

thus is a 4096 bins sparse histogram [4].

The dominant square descriptor is composed by sequen-

tially stitching the histogram of concentric square bands from

the inside out, which forms a larger sparse histogram after

normalization. Finally, the BoS descriptor of BP is defined as

the set of sparse histograms of all dominant squares in BP .

BoS similarity measurement. For two squares Su and

Sv , we use the Bhattacharyya coefficient to measure their sta-

tistical closeness,

ρ(Su, Sv) =
1

|c|
|c|∑

i=1

Ba(Hu, Hv) (6)

Ba(Hu, Hv) =
b∑

i=1

√
Hu(i) ·Hv(i) (7)

where Hu and Hv are histogram descriptors of square Su and

Sv , respectively, c is the number of square bands, and b is the

number of histogram bins. Based on ρ(·), we can measure the

unnormalized similarity of two BoS BA and BB as

ψ(BA,BB) =
1

Z

∑

Su∈SA,Sv∈SB

wuwvρ(Su, Sv), (8)

where wu and wv are the weights of squares Su and Sv , re-

spectively. Z =
∑

Su∈SA,Sv∈SB
wuwv is the normalization

factor.

Finally, for two superpixels P and Q, we measure their

normalized similarity as the average pairwise similarity of all

dominant squares in P and Q,

Sim(P,Q) =
ψ(BP ,BQ)

ψ(BP ,BP )ψ(BQ,BQ)
(9)
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where BP and BQ are the BoS of superpixel P and Q.

4. EXPERIMENTAL RESULTS

In this section, we verify the performance of the proposed

BoS model on two superpixel-based applications, i.e. interac-

tive image segmentation and image co-saliency detection.

Image segmentation. In our experiment, we evaluated

the performance of the proposed BoS model in interactive

foreground segmentation and compared with the state-of-the-

art MSRM method [4].

We first tested the invariance of our BoS descriptor to

image rotation and scaling. We randomly selected 5 images

from the cosegmentation dataset [7, 8]. For each image, we

generated 7 test rotation image by rotating the original image

by the angles from 1
4π to 7

4π and 10 test scaling images, re-

spectively. We measured the pairwise similarities of all test

images to the original one. Fig. 3 shows that the proposed

BoS descriptor is quite stable to rotation and scaling. This

is because the dominant square and concentric square band

representation are invariant to image rotation and scaling.

We then tested the accuracy of the BoS model in interac-

tive image segmentation. Fig. 4 shows the comparative pre-

cision, recall, and F1-measure of using our BoS model and

the superpixel regional histogram of the MSRM method [4]

for segmenting 12 randomly selected benchmark images. We

can clearly see that our BoS model outperforms the super-

pixel regional histogram representation, which is attributed to
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Fig. 6. PR curve of co-saliency detection on benchmark

dataset: BoS model vs. histogram-based co-saliency detec-

tion [12]. BoSm represents the BoS model using multiple-

layers superpixel pyramid and the BoSs denotes BoS using

single-layer superpixels.

the abilities of BoS model to accurately capture the delicate

appearance of superpixels and to better match the superpix-

el peculiarities than common regular region features. Fig. 5

shows more results for interactive foreground segmentation of

using the BoS model and the MSRM method [4]. For the fair-

ness of comparison, in each image, we used exactly the same

(simple) foreground/background scribbles for both methods.

The segmentation differences between MSRM and BoS are

only caused by the superpixel representation and similarity

measurement. Fig. 5 clearly shows that the superpixel region-

al histogram representation of MSRM may be able to gener-

ate reasonable results for homogeneous images, but may fail

in segmenting highly textured and variant objects in clutter

scenes, e.g. the leopard in forest or the doll in front of a tree.

In contrast, our BoS model can produce much better results

for such regions. Note that, in our experiments, we only used

a small number of simple foreground/background scribbles,

because in practice we usually prefer obtaining good segmen-

tations using less number of scribbles.

Image co-saliency detection. In this experiment, we re-

place the regional color and texture feature descriptor of a

state-of-the-art co-saliency model [12] with our BoS descrip-

tor. That is, the color variation and texture property in each

superpixel are described by our BoS model. Then we com-

pare the performance of the modified co-saliency detection to

the original one on the benchmark co-saliency dataset [12],

which contains 105 image pairs covering multiple types of

objects like human objects, flowers, buses, cars, and boats.

Each image pair has ground truth masks about the human-

labeled foreground and background. Fig. 6 shows the com-

parative PR curve of co-saliency detection using BoS descrip-

tions, including multi-layered BoS (denoted by BoSm) and

single layered BoS (denoted by BoSs), and the regional col-

or and texture features. We can clearly observe that although

the original method can achieve very good detection accuracy

on the dataset, using BoS descriptions may further boost the
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Fig. 5. Comparative results on interactive foreground segmentation.

performance. Besides, multi-layered superpixel pyramid pro-

duced the best and outperformed BoSs that is better than the

regional color and texture description.

Fig. 7 shows several co-saliency detection results using

the BoS descriptors and compares with the results of origi-

nal co-saliency model using regional color and texture fea-

ture [12]. The number in each co-saliency map indicates the

F1-measure of this result. It can be seen that using BoS de-

scription can further contribute to improvement of detection

accuracy both quantitatively and perceptually.

5. CONCLUSION

In this paper, we have proposed a general scheme, namely

BoS, to faithfully represent superpixels and accurately mea-

sure their pairwise similarities. Compared to the existing reg-

ular region descriptors, the BoS model better matches the pe-

culiarities of superpixels and is able to accurately capture the

delicate appearances of superpixels and can reasonably han-

dle the specific split-and-merge variety of superpixels. Ex-

periments on interactive image segmentation and co-saliency

detection demonstrate the superior performance of the BoS

model in measuring superpixel-level similarities than exist-

ing methods, especially for the superpixels of highly variant

objects in clutter backgrounds. In the future, we will be in-

terested in investigating the application of the BoS model in

multiple images cosegmentation and superpixel-based large

displacement optic flow.
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