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Abstract
With the popularity of knowledge graphs growing rapidly, large amounts of RDF graphs have been released, which raises 
the need for addressing the challenge of distributed subgraph matching queries. In this paper, we propose an efficient dis-
tributed method to answer subgraph matching queries on big RDF graphs using MapReduce. In our method, query graphs 
are decomposed into a set of stars that utilize the semantic and structural information embedded RDF graphs as heuristics. 
Two optimization techniques are proposed to further improve the efficiency of our algorithms. One algorithm, called RDF 
property filtering, filters out invalid input data to reduce intermediate results; the other is to improve the query performance 
by postponing the Cartesian product operations. The extensive experiments on both synthetic and real-world datasets show 
that our method outperforms the close competitors S2X and SHARD by an order of magnitude on average.
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1 Introduction

More than one decade ago, the Semantic Web was pro-
posed by Berners-Lee et al. [3], which now has become a 
series of W3C standards1 in order to realize the machine 

understandable World Wide Web. The semantic links 
among resources on the traditional Web can be explicitly 
represented on the Semantic Web. In the meanwhile, the 
graph data model has been more and more popular to man-
age graph and network data in various domains. Compared 
with the relational model, the graph model can more natu-
rally characterize relationships among entities in the real 
world. In particular, the Resource Description Framework 
(RDF) [16] is a mainstream graph model, which has become 
the de-facto standard for representing and exchanging data 
on the Semantic Web. In recent years, with the campaign 
of the Linked Open Data [4] initiative, the scale of RDF 
graph data has grown exponentially. Hence, it is essential 
to develop efficient storage and query mechanism for large-
scale RDF graphs.

The Resource Description Framework, a graph-based 
data model, is commonly used to represent and organize 
resources in knowledge graphs because of its flexibility. An 
RDF data are a collection of triples (s, p, o), each of which 
represents a statement of a predicate p between a subject s 
and an object o. An RDF triple can be naturally viewed as 
an edge with s and o as vertices. Thus, an RDF graph can 
be represented as a labeled directed graph, e.g., the example 
RDF graph G1 excerpted from DBpedia dataset in Fig. 1. It 
describes some information about philosophers. Due to the 
flexibility of RDF data, they are widely applied in various 
fields, such as science, bioinformatics, business intelligence, 
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and social networks [12]. In real world, the size of RDF data 
often reaches hundreds of millions of triples.

Subgraph matching is widely considered as one of the 
fundamental mechanisms for querying large-scale graph 
data. SPARQL is the standard query language for RDF 
graphs endorsed by W3C [5], in which basic graph patterns 
(BGP) are realization of subgraph matching. Theoretically, 
the semantics of SPARQL BGP is equivalent to the problem 
of subgraph homomorphism [18], whose evaluation com-
plexity is known to be NP-complete [7]. Therefore, how to 
efficiently answer subgraph matching queries (i.e., BGP) 
over big RDF graphs has been broadly recognized as a chal-
lenging problem.

Subgraph matching aims at finding all the satisfying 
matching subgraphs over the large data graph. More specifi-
cally, given a data graph, i.e., an RDF graph G and a query 
graph Q, subgraph matching will fetch all the subgraphs over 
G that satisfying all the triples contained in Q, which is a 
conjunctive query (CQ) on G. For instance, the following 
CQ Q1 consists of two triple patterns over G1.

Currently, there has been some research works on sub-
graph matching queries over RDF data in a distributed 
environment. One category of methods is based on the rela-
tional schema [8, 11, 14, 19, 22], in which RDF data are 

(1)Q1(?x, ?y) ← (����_����, �����������, ?x) ∧ (����_����, ������������, ?�)

modeled as a set of triples and stored in relational tables 
or a variant relational schema. All of these methods do not 
consider inherent graph-like structures of RDF data. When 
processing complex subgraph matching queries, excessive 
join operations over relational tables are needed, which may 
incur expensive cost. In contrast, the other category of meth-
ods manages RDF data in native graph formats [17, 20, 28] 
and represents subgraph matching queries as query graphs, 
which typically employs adjacency lists to store RDF data. 
Thus, for a subgraph matching problem, how to reduce the 
enormous intermediate results is crucial.

In [24], query graphs are decomposed into stars (trees of 
depth 1). Lai et al. pointed out that the star-join algorithm 
in [24] suffers from scalability problems due to the genera-
tion of a large number of matches when evaluating a star 
with multiple edges [15]. The reason for this issue is that 
in unlabeled, undirected graphs, they focused on it is very 
likely that the large combination of intermediate results is 
generated due to the lack of distinguishable information 
on vertices and edges. Thus, they proposed the so-called 

TwinTwigJoin MapReduce [6] algorithm, where a TwinTwig 
is either a single edge or two incident edges of a vertex. 
Unlike unlabeled and undirected graphs in [15, 24], RDF 
graphs have URIs as the unique vertex labels and directed 
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1
 excerpted from DBpedia dataset
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edges. Thus, the problem concerned in [15] does not exist 
over RDF graphs. Therefore, it is reasonably safe to exploit 
the more holistic star-shaped structures other than just twin 
twigs as decomposition units of query graphs to minimize 
the amount of intermediate results.

To this end, we propose a new star-based query decompo-
sition strategy, in which the star retains more holistic graph 
structures of query graphs than the TwinTwig method [15]. 
Thus, our approach can be completed in fewer MapReduce 
rounds. In our method, in order to evaluate subgraph matching 
queries more efficiently, query graphs are decomposed into a 
set of stars by using the semantic and structural information 
embedded in RDF graph as heuristics (i.e., h values defined in 
this paper), to evaluate subgraph matching queries in MapRe-
duce. In addition, in order to reduce the intermediate results, 
the matching order of stars is determined by a greedy strategy.

Our main contributions include: (1) we propose an 
efficient and scalable distributed algorithm based on star 
decomposition, called StarMR, for answering subgraph 
matching queries on RDF graphs; (2) two optimization 
strategies of StarMR are devised, one of which employ-
ing the properties in RDF graphs to filter out invalid input 
data in MapReduce iterations, the other postponing part of 
Cartesian product operations to the final step of MapReduce 
to reduce a part of unpromising Cartesian product opera-
tions; and (3) extensive experiments on both synthetic and 
real-world RDF graphs have been conducted to verify the 
efficiency and scalability of our method. On average, the 
experimental results show that StarMR outperforms the 
state-of-the-art method by an order of magnitude.

The rest of this paper is organized as follows. Section 2 
briefly reviews related work. In Sect. 3, we introduce pre-
liminary definitions on RDF graphs and subgraph matching 
queries. In Sect. 4, we describe in detail how to decom-
pose CQ queries, determine the matching order of stars, 
and match CQ queries using MapReduce. We then present 
two optimization strategies in Sect. 5. Section 6 shows our 
extensive experimental results, and we conclude in Sect. 7.

2  Related Work

The existing research work on distributed/parallel SPARQL 
queries over large-scale RDF graphs can be classified as 
follows:

Relational Schema Approach In the context of the urgent 
need for Web-scale distributed query systems [29], SHARD 
[19] is designed and developed using the MapReduce frame-
work to address the scalability limitation issue. In terms of 
data persistence, the metadata of the system is persisted in the 
Hadoop Distributed File System [23]. In that case, the query 
graph is decomposed into the triple sets. More specifically, 
SHARD handles SPARQL queries over RDF data for triple 

stores which need to iterate over query statements to bind 
variables to vertices in data graphs while satisfying all of 
the query constraints. Meanwhile, to accelerate processing 
the subsequent similar queries, certain relevant intermediate 
results might not be removed immediately. Each round of 
MapReduce only adds one query clause with the join opera-
tion in [19]. Although SHARD has a significant improve-
ment in enhancing the datasets scalability with the aid of 
Hadoop, due to no plans for query processing, a large number 
of Hadoop jobs are required to execute the whole procedure.

Similarly, HadoopRDF [14] features efficiency and scal-
ability in managing large amounts of RDF data. For the data 
stored in the Hadoop cluster, the framework utilizes a schema 
to convert various format RDF data to N-triples. The standard 
data conversion can bring great benefits for the later process-
ing. Moreover, HadoopRDF divides RDF triples based on the 
predicates into multiple smaller files. In this way, for a user 
query, if the predicate position is not a variable, the corre-
sponding file can be matched directly; otherwise, because the 
predicate is a variable, HadoopRDF cannot make sure which 
type of the object belongs to. To avoid searching all the files, 
another file organization category named object splitting is 
exploited. The object splitting method further classifies files 
according to the object type. Meanwhile, by combining the 
predicate and object splitting approach, the query processing 
can speed up. Specifically, the query retrieval involves three 
phases. First, regarding the subgraph matching query clause 
as the input and passing it to the first component named input 
selector. Second, making use of the proposed greedy algo-
rithm to guarantee the generated query plan as the optimal 
one. Finally, joining the relevant intermediate items together 
and feeding the final results back to the user. Moreover, a 
triple pattern in SPARQL queries cannot simultaneously take 
part in more than one join in a single Hadoop job by using 
the MapReduce framework.

The abovementioned two methods do not employ any 
structural information of query graphs, thus a large number 
of join operations may incur expensive costs. Furthermore, 
Virtuoso [8], supporting RDF in a native RDBMS, also 
model RDF data as a set of triples. TriAD [11], using a cus-
tom MPI protocol, employs six SPO permutation indexes, 
partitions RDF triples into those indexes, and uses a local-
ity-based summary graph to speed up queries. Many cur-
rent RDF query approaches are extremely dependent on the 
query pattern shapes, i.e., for certain query pattern shapes, 
the query processing can execute quite well. While the query 
performance drops for other query shapes. Hence, Schätzle 
et al. [22] proposed a relatively efficient query processing 
system named S2RDF, which does not depend on the query 
pattern shapes anymore. In addition, this approach extends 
the vertical partitioning [1] methods and Join Indices [25] to 
preprocess the original RDF data. More specifically, S2RDF 
introduces the relational partitioning model ExtVP to store 
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RDF data over the Spark parallel framework, by which it 
can effectively minimize the query input size. Nevertheless, 
as for modification operations, the deletion operation of the 
triples might result in a decline in query performance and 
stability. In addition, the cost of the semi-join preprocessing 
in [22] is prohibitively expensive.

Native Graph Approach The star-decomposition-based 
searching methods proposed by Yang et al. [26] is about 
approximate matching, which is devoted to top − k star 
query. In [26], the query decomposition phase is to decom-
pose the subgraph query to a set of star queries, and for each 
decomposed star query, the matches in decreasing order of 
matching score and the best match can be picked out. In [28], 
RDF data are modeled in its native graph form, a key-value 
store which saves node identifiers as the keys, and the adja-
cency lists of nodes as the values. Trinity.RDF [28] lever-
ages graph exploration to reduce the volume of intermediate 
results, while the final results need to be enumerated at the 
single master node using a single thread. S2X [20] builds 
on GraphX [9], a distributed graph processing framework 
in top of Spark [27], to implement query graph matching of 
SPARQL. In S2X, a query graph is also decomposed into 
triple patterns which is similar to the methods in [14, 19]. 
All of these triple patterns are matched first; then, inter-
mediate results are gradually discarded by iterative com-
putation; finally, the remaining matching results are joined, 
which may lead to potentially large intermediate results. In 
addition, Peng et al. adopt a partial evaluation and assembly 
framework to perform SPARQL queries based on gStore 
[30], a graph-based SPARQL query engine using VS*-tree 
indexes [17]. In their method, each slave machine evaluates 
the query in the partial computation phase, and then, in the 
assembly phase, a large number of local partial matches are 
sent to the coordinator and joined together to obtain the final 
results, which may become a performance bottleneck when 
the amount of partial matches are large.

Distributed Systems In the era of Big Data, the distributed/
parallel technique has become an indispensable tool for large-
scale knowledge data management. In recent years, plentiful 
distributed systems and frameworks for large-scale graph data 
have been proposed. For instance, YARS2 [13] is a representa-
tive knowledge graph managing system based on MapReduce. 
YARS2 is a distributed semantic web search engine, which 
integrates data retrieving, collecting, indexing, and brows-
ing together. It plays a pivotal role in managing large-scale 
graph data models and enabling interactive query answering. 
The system consists of several components: crawler, indexer, 
object consolidator, index manager, query processor, ranker, 
and user interface. The crawler is a pipelined architecture for 
crawling diverse source data into a uniform schema, and the 
indexer is a general framework for managing keyword indices 
and statement indices; then, the query processor will generate 
the optimal query plan for answering the queries. Then, the 

corresponding results are retrieved to users in the descending 
orders. Another research work Sempala [21], which is an RDF 
graph data query engine based on distributed SQL-on-Hadoop 
database Impala and Parquet, distributed file format, which 
provides interactive-time SPARQL query processing effi-
ciently. In addition, Lai et al. proposed a MapReduce-based 
distributed efficient subgraph enumeration algorithm based 
on TwinTwig structure decomposition, but the algorithm is 
only used for undirected unlabeled graphs.

In this paper, we focus on the analytical processing scenario 
of RDF graphs using MapReduce which does not take advan-
tage of any prebuilt indexes. Though building indexes can defi-
nitely accelerate lookups with high selectivity, it will not ben-
efit analytical processing in which almost all data are accessed. 
So, it is unfair to compare our approach with those based on 
intensive indexes, such as S2RDF [22], the distributed gStore 
system [17]. In our method, (1) we store RDF triples using 
the adjacency list scheme; (2) a star-decomposition strategy 
with heuristic information is proposed, which is able to keep 
more holistic structures of query graphs; (3) as to optimization 
strategies, we employ RDF properties to filter out unpromising 
input data and postpone Cartesian product operations.

3  Preliminaries

In this section, we introduce several basic background defi-
nitions about RDF graphs and subgraph matching queries 
which are used in our algorithms.

Definition 1 (RDF graph) Let U and L be the disjoint 
infinite sets of URIs and literals, respectively. A tuple 
(s, p, o) ∈ U × U × (U ∪ L) is called an RDF triple, where s 
is the subject, p is the predicate, and o is the object. A finite 
set of RDF triples is called an RDF graph.

Given an RDF graph G, let V ,E,� denote the set of 
vertices, edges, and edge labels, respectively. Formally, 
V = {s ∣ (s, p, o) ∈ G} ∪ {o ∣ (s, p, o) ∈ G} , E ⊆ V × V  , and 
� = {p ∣ (s, p, o) ∈ G} . The function lab: E → � returns the 
labels of edges in G.

Definition 2 (Query graph) Given an RDF graph G, a 
CQ Q over G is defined as: Q(z1,… , zn) ←

⋀
1≤i≤m tpi , 

where tpi = (xi, ai, yi) is  a tr iple pattern,  xi, yi ∈ 
V ∪ Var  ,  ai ∈ � ∪ Var  ,  zj  is a var iable and zj ∈ 
{xi ∣ 1 ≤ i ≤ m} ∪ {yi ∣ 1 ≤ i ≤ m} . A CQ Q is also referred 
to as a query graph GQ.

Let V(Q) and E(Q) be the set of vertices and edges in GQ , 
respectively. For each vertex u ∈ V(Q) , if u ∈ Var , then u 
can match any vertex v ∈ V ; otherwise, u only can match the 
vertex v ∈ V  whose label is the same as that of u.
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Definition 3 (Subgraph matching) The semantics of a CQ Q 
over an RDF graph G is defined as: (1) � is a mapping from 
vertices in x̄ and ȳ to vertices in V, where x̄ = (x1,… , xm) , 
ȳ = (y1,… , ym) ; (2) (G,𝜇) ⊨ Q iff (�(xi),�(ai),�(yi)) ∈ E 
and the labels of xi , ai and yi are the same as that of 
�(xi),�(ai) and �(yi) , respectively, if xi , ai , yi ∉ Var ; and 
(3) �(Q) is the set of 𝜇(z̄) , where (z̄) = (z1,… , zn) , such that 
(G,𝜇) ⊨ Q . �Q is the answer set of the subgraph matching 
query GQ over G.

Some definitions about mappings are needed. Two 
mappings �1 and �2 are called compatible denoted as 
�1 ∼ �2 , iff every element v ∈ dom(�1) ∩ dom(�2) satis-
fies �1(v) = �2(v) , where dom(�i) is the domain of �i . Fur-
thermore, the set union of two compatible mappings, i.e., 
�1 ∪ �2 , is also a mapping.

4  The StarMR Algorithm

In this section, the distributed adjacency list storage strategy 
for an RDF graph will be first introduced. Then, we pre-
sent how to decompose the query graph into a set of stars 
and determine the matching order of these stars. Finally, we 
describe in detail how to implement the subgraph matching 
query using MapReduce in a left-deep-join framework.

4.1  Storage Schema

In this paper, the RDF graph G is stored in a distrib-
uted adjacency list. For each vertex v ∈ V  , we use N(v) 
to denote the neighbor information of vertex v, where 
N(v) = {(pi, v

�
i
) ∣ (v, pi, v

�
i
) ∈ G} . For example, the adjacency 

list storage schema of the RDF example graph G1 is given 
in Table 1.

Taking the RDF graph G1 in Sect. 1 as an example, all 
the vertices appeared in the subject positions are stored in 

the first column, all the neighbor vertices of each subject 
vertex are stored in the set of N(v). For example, the entity 
London has one outgoing edges, and its neighbor set is { ⟨
country,United_Kingdom⟩}.

4.2  Star Matching

In this paper, the minimum matching unit is a star in our 
method, and the RDF graph G is stored in adjacency lists. 
Next, we give the definition of star.

Definition 4 (Star) A star is a tree of height one, denoted 
by T = (r, L) , where (1) r is the root of T; and (2) L is a set 
of 2 tuples (pi, li) , i.e., li is a leaf of T and (r, pi, li) is an edge 
from r to li . Let V(T) and E(T) be the set of nodes and edges 
in T, respectively.

When matching a star T on the adjacency list of RDF 
graph, if the root vertex of star T can be well matched on one 
of the subject vertices of the adjacency list first, the matching 
process will not be terminated. Then, the star T will continue 
matching the leaf vertices li on N(v) and once matched, we can 
obtain the sets of all the matching vertices, which are defined 
as the candidate sets S(li) in this paper. Next, we will present 
the detailed process of a star matching on an adjacency list. 
And the star matching algorithm is listed as follows.

Table 1  The adjacency list of RDF graph G
1

v N(v)

Karl_Marx {⟨mainInterest,Natural_Science⟩,
⟨mainInterest,Labour_relation⟩,
⟨influencedBy,Aristotle⟩,
⟨almaMater,University_of_Bonn⟩,
⟨influencedBy,Adam_Smith⟩,
⟨deathPlace,London⟩ }

⋯ ⋯

London { ⟨country,United_Kingdom⟩ }

Algorithm 1: StarMatch(T,N(v))
Input : Star: T = (r, L), where L = {(p1, l1), . . . , (pt, lt)}, N(v), v ∈ V
Output: Matching results of T over N(v): Ωv(T ) = {µ1, µ2, ..., µn}

1 Ωv(T ) ← ∅;
2 if T.r matches vertex v then
3 foreach (pi, li) ∈ T.L do // the candidate set S(li) of leaf li
4 if pi /∈ V ar then
5 S(li) ← {v′ | (pi, v′) ∈ N(v) ∧ li matches v′} ;

6 else // is a wildcard
7 S(li) ← {v′ | ( , v′) ∈ N(v) ∧ li matches v′} ;

// do Cartesian product operation {v} × S(l1) . . . S(lt) to get Ωv(T )
8 Ωv(T ) ← {µ ∪ µ1 . . . µt | µ = {(T.r, v)} ∧ µi = {(li, v′)}, li ∈ T.L ∧ v′ ∈ S(li)};
9 return Ωv(T );
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Algorithm 1 will be run in the following steps: (1) first 
matches the root T.r with the vertex v (line 2); (2) then 
obtains the candidate matching set of every leaf (lines 3–7); 
(3) next does the Cartesian product operations on the can-
didate matching sets of vertices in the star T to get match-
ing results (line 8). Finally, StarMatch(T, N(v)) returns the 
matching results of the star T over N(v) (line 9), and �(T) is 
the union of �v(T) , where v ∈ V .

4.3  Star Decomposition of Query Graphs

Before matching the subgraphs in an RDF graph, it is neces-
sary to decompose the query graph into the minimum match-
ing unit stars. Next, we give the definition of star decom-
position and explain why the matching orders are crucial. 

In addition, we propose an effective approach to reduce the 
number of intermediate results, which leverages the user-
defined heuristic information h value.

Definition 5 (Star decomposition) The star decomposition 
of a CQ Q = {tp1,… , tpn} is denoted as D = {T1,… , Tm} , 
where (1) Ti is a star; (2) Ti.r ≠ Tj.r, Ti, Tj ∈ D ∧ i ≠ j ; 
( 3 )  E(Ti) ∩ E(Tj) = �, Ti, Tj ∈ D ∧ i ≠ j  ;  a n d  ( 4 ) ⋃

1≤i≤m E(Ti) = E(Q).

Example 1 Consider the example query Q1 over the RDF 
graph G1 in Sect. 1, the query graph GQ1

 of Q1 is shown in 
Fig. 2. Moreover, D is the star decomposition of GQ1

 which 
contains three stars, T1 , T2 , and T3 .   □

GQ1
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Fig. 2  The query graph and star decomposition of query Q
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After obtaining the query decomposition D of Q1 , there 
exist six matching orders. According to Algorithm 1, stars 
T1, T2 , and T3 over G1 have 2, 2, and 4 matching results, 
respectively. Consider the matching order T1T3T2 , there 
exists eight intermediate results by joining the matching 
results of star T1 and T3 , because these two stars do not share 
any common vertex. However, another matching order 
T2T1T3 only generates one intermediate result. In other 
words, the matching order of stars has a significant effect 
on the performance of queries.

We leverage the structure information and semantics 
in RDF graphs to decompose the query graph into stars 
and give a matching order to reduce the number of inter-
mediate results using a greedy strategy. In particular, we 
define h value as the heuristic information. The func-
tion fre: � → ℕ gets the frequency of a predicate p in an 
RDF graph G, where ℕ is the set of natural numbers and 
fre(p) = |{(si, p, oi) ∣ (si, p, oi) ∈ G}| . Then, for a query Q 
over G, let P(u) be the set of properties (a.k.a., predicates) of 
vertex u in Q, i.e., P(u) = {pi ∣ (u, pi, u

�
i
) ∈ Q} . The h value 

of each vertex u ∈ V(Q) is defined as follows:

where outDeg is the out degree of vertex u. The h value 
is determined by two factors: (1) the more out degrees a 
vertex u has, the more variables may be bound when the star 
rooted at u is matched; (2) the smaller ���(p), p ∈ P(u) is, the 
higher selectivity of vertex u has. If all properties of vertex 
u are variables, h(u) = 0 . Our star-decomposition algorithm 
guided by h values is shown in Algorithm 2.

(2)�(u) =
|outDeg|

minp∈P(u) ���(p)

In Algorithm 2, a constant vertex in Qc having the maxi-
mum h value is selected as the root of the first star (lines 
3–4). If Qc is an empty set, the algorithm picks up a vertex 
in Sub(Q) whose h value is the maximum (lines 4–5). The 
star rooted at the selected vertex is generated (line 7) by call-
ing the function genStar (lines 13–17). Then, we use Mv to 
denote the candidate set of root nodes which can guarantee 
that the star to be generated and the stars that have been gen-
erated share at least one common vertex (line 9). Similarly, 
after obtaining the vertex r with respect to the h value, a new 
star is generated (lines 10–11). This process (lines 8–11) 
terminates until the set Q is empty.

For a subgraph matching query Q, Algorithm 2 can pro-
duce a star decomposition D and determine an order of these 
stars, T1 …Tm , such that 

⋃
1≤i<j V(Ti) ∩V(Tj) ≠ � , 1 ≤ j ≤ m . 

Based on this matching order, we further introduce the con-
cept of the partial query graph.

Definition 6 (Partial query graph) The partial query 
graph Pj, 1 ≤ j ≤ m is a subgraph of GQ , where (1) 
V(Pj) =

⋃
1≤i≤j V(Ti)  a n d  ( 2 )  E(Pj) =

⋃
1≤i≤j E(Ti)  . 

Obviously, P1 = T1 and Pm = GQ . Let �(Ti) and �(Pi) 
be the set of matching results for star Ti and partial 
query graph Pi , respectively. We have �(P1) = �(T1) , 
�(Pt) = �(Pt−1) ⋈ �(Tt) , and �(Pm) = �(Q).

Example 2 Consider the query Q1 over G1 , where h(?y) = 2

3
 , 

h(?x) = 4

2
 , and h(?z) = 1

4
 . According to Algorithm 2, the first 

selected vertex is ?x and the corresponding star is T2 ( T ′
1
 ) in 

Fig. 2. Then, stars T1 ( T ′
2
 ) and T3 ( T ′

3
 ) are generated. Based 

on this order, P1,P2 , and P3 in Fig. 2 are the partial query 

Algorithm 2: StarDecompose(Q)
Input : A Query graph Q: {tp1, tp2, ..., tpn}
Output: A Queue of stars D: {T1, ..., Tm}

1 D ← ∅; // D: the queue of stars, V (D): the set of vertices in D
2 Qc ← {s | s ∈ Sub(Q) ∧ s /∈ V ar}; // Sub(Q): the set of subjects in Q
3 if Qc �= ∅ then
4 r ← argmaxv∈Qc h(v)

5 else
6 r ← argmaxv∈Sub(Q) h(v)

7 genStar(r,Q,D); // generate the star rooted at vertex r
8 while Q �= ∅ do
9 Mv ← {s | s ∈ Sub(Q) ∧ s ∈ V (D)} ∪ {s | (s, p, o) ∈ Q ∧ o ∈ V (D)};

10 r ← argmaxv∈Mv h(v);
11 genStar(r,Q,D);

12 return D : {T1, ..., Tm};
13 Function genStar (r,Q,D) // generate a star
14 T.r ← r;
15 T.L ← {(pi, li) | (r, pi, li) ∈ Q};
16 D.enqueue(T );
17 Q ← Q \ {(r, pi, li) | (pi, li) ∈ T.L};



31Efficient Subgraph Matching on Large RDF Graphs Using MapReduce  

1 3

graphs of Q1 . Obviously, P3 is exactly the original query 
graph GQ1

 .   □

4.4  Subgraph Matching Algorithm Using 
MapReduce

Next, we show how to use MapReduce to answer a subgraph 
matching query in a left-deep-join framework and demon-
strate the pseudocode of our StarMR algorithm.

We can get P1 = T1 and Pm = GQ according to the partial 
query graph definition. In addition, the notation �(Ti) repre-
sents the matching results of the star Ti . The notation �(Pi) 
represents the matching results of the partial query graph 
Pi . The partial query graph Pi can be obtained by joining 
the star Ti and partial query graph Pi−1 together. Thus, the 
intersection of Pi−1 and Ti will serve as the joining key. To 
process the subgraph matching query efficiently, we present 
Algorithm 3 to answer the queries, which uses MapReduce.

Algorithm 3 decomposes the query Q into a queue K of 
stars (line 1) and matches these stars in MapReduce itera-
tions (lines 3–9). Each round of the MapReduce iteration 
joins one star with the partial results until all stars are 
matched. Map function consists of two parts: (1) when the 
input value is N(v) (lines 12–20), the function matches the 
star Tt over every neighbor information N(v) in RDF graph 
G in parallel (line 13), then let the matching results of inter-
section of vertex sets of star Tt and partial query graph Pt−1 , 
i.e., �key , be keys (line 22); and (2) when the input value is 
a mapping in �(Pt−1) (lines 22–23), similarly, let �key be 
keys (line 20). Every mapping � in �v(Tt) and �(Pt−1) is 
transformed into a key-value pair (�key,�) . Note that when 
t = 1 , the output of map is (�,�) (lines 14–16). reduce func-
tion joins the matching results of Tt and Pt−1 to generate the 
matching results of Pt with �key as the keys (lines 24–26). 
Figure 3 shows the matching process of StarMR.

Theorem 1 Given an RDF graph G and a query graph GQ , 
we assume that Algorithm 2 decomposes GQ into a queue of 

Algorithm 3: StarMR
Input : RDF graph G = (V,E,Σ), A query graph Q: {tp1, tp2, ..., tpn}
Output: The answer set: Ω(Q)

1 K ← StarDecompose(Q); // decompose query graph
2 Ω(Q) ← ∅, t ← 1;
3 while K is not empty do // MapReduce iterations
4 Tt ← K.dequeue();
5 map(∅, N(v));
6 if t > 1 then
7 map(∅, µ) s.t. µ ∈ Ω(Pt−1);
8 reduce(µkey , (Ω1, Ω2) s.t. Ω1 ⊆ Ω(Tt) ∧Ω2 ⊆ Ω(Pt−1));

9 t ← t+ 1;

10 return Ω(Pm);
11 Function map (∅, N(v) or µ)
12 if value is an adjacency list N(v) in G then // match the star Tt

13 Ωv(Tt) ← starMatch(Tt, N(v)) ;
14 if t = 1 then
15 foreach µ ∈ Ωv(T1) do
16 return (∅, µ) ;

17 else
18 foreach µ ∈ Ωv(Tt) do // get the mapping µkey as key
19 µkey ← {(uk, µ(uk)) | uk ∈ V (Pt−1) ∩ V (Tt)};
20 return (µkey , µ);

21 else // value is a mapping
22 µkey ← {(uk, µ(uk)) | uk ∈ V (Pt−1) ∩ V (Tt)} ;
23 return (µkey , µ) ;

24 Function reduce (µkey , (Ω1, Ω2))
25 foreach (µ, µ′) ∈ Ω1 ×Ω2 do
26 return (∅, µ ∪ µ′) ; // µ ∪ µ′ ∈ Ω(Pt)
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stars D = {T1,… , Tm} . Algorithm 3 gives the correct query 
results, and the number of MapReduce iterations is m.

Proof (Sketch) The algorithm correctness can be proved as 
follows: (i) In the first MapReduce iteration of Algorithm 3, 
Algorithm 1 is invoked by the map function to match the star 
T1 ; then, the matching set �(T1) , i.e., �(P1), can be obtained. 
From the second round of the MapReduce iteration on, Algo-
rithm 3 matches a new star Tt in each round according to the 
matching orders computed by Algorithm 2. In this way, the 
star matching result �(Tt) can be given out. (ii) In the reduce 
function, the matching results �(Pt−1) and �(Tt) are joined, 
and the joining results �(Pt) can be obtained, where �(Pt−1) 
is the matching results of partial query graph Pt−1 , which is 
obtained in the last round of the MapReduce iteration. Con-
sequently, the answer set of query Q, i.e., �(Pm), can be 
obtained in the m round of the MapReduce iteration.   □

Theorem 2 The time complexity of Algorithm 3 is bounded 
by O(|V|m ⋅ |Nmax|m⋅|Lmax|) , where |V| is the size of G, |Nmax| 

Fig. 3  Matching stars with the 
basic algorithm ������
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is the largest out degree in G, and |Lmax| is the largest out 
degree in GQ.

Proof (Sketch) In Algorithm 3, each round of the MapRe-
duce iteration matches one star; therefore, it can evaluate the 
query Q in m rounds. The time complexity of Algorithm 3 
consists of two parts: (1) the time complexity of star match-
ing is 

∑
1≤t≤m

∑
v∈V (�N(v)� + ��(Tt)�) ; (2) the time complex-

ity of join operations is 
∑

1<t≤m �𝛺(Pt−1)� × �𝛺(Tt)� . In the 
worst case, every leaf in Tt can match all neighboring ver-
tices of a vertex v, v ∈ V  , i.e., |�v(Tt)| = |N(v)||Tt .L| . Thus, 
the time complexity of Algorithm 3 is bounded by O(|V|m ⋅ 
|Nmax|m⋅|Lmax|)   □

5  Two Optimization Strategies

In this section, two optimization strategies are proposed to 
improve the efficiency of the StarMR algorithm. The first one 
leverages the inherent semantics of the RDF graph to reduce 
the overhead expense; the other technique improves the query 
performance by postponing the Cartesian product operations.
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5.1  RDF Property Filtering

We take advantage of the inherent semantics embedded 
in RDF graphs to filter out unpromising computations. As 
mentioned in Sect. 1, the RDF describes resources by defin-
ing classes and properties. In addition, the RDF Schema 
(RDFS)2 is an extended version of RDF, which is regarded 
as a framework to define classes of resources. For instance, 
the RDF triple (s, ��� ∶ ����,C) declares that resource s is 
an instance of the class C, denoted by s ∈ C . We assume that 
for each subject s in an RDF graph G, there exists at least a 
triple (s, ��� ∶ ����,C) ∈ G . We believe that this assump-
tion is reasonable since every resource should belong to at 
least one type in the real world.

Example 3  As  shown in  F ig .   1 ,  t he  t r ip le 
(����������_��_����,  ��� ∶ ����,  ������������) 
denotes that University_of_Bonn is an instance of 
the class Organization. Other such triples in Fig. 1 are 
omitted. Moreover, all instances of class ������������ are 

highlighted in green. Similarly, there exist other classes in 
G1 , e.g., Person in blue and Country in red.   □

G i ve n  a n  R D F  g r a p h  G = (V ,E,�)  ,  l e t 
P�(C) = {p ∣ (s, p, o) ∈ G ∧ s ∈ C} be the set of RDF prop-
erties of class C. Note that the size of classes in an RDF 
graph is much less than vertices in the corresponding RDF 
graph. When matching a star T in the function Map(T, N(v)), 
RDF properties of C can be used to filter out input data 
as follows: if v ∈ C ∧ P(T .r) ⊈ P�(C) , the procedure 
starMatch(T, N(v)) in map function can be pruned.

Example 4 Consider matching star T2 rooted at ?x in Fig. 2 over G1  
in Fig. 1, we have P(?x) = {������������, ������������,

����������, ���������} a n d  P�(������������) = 
{�������} . Due to ����������_��_������ ∈ ����− 
�������� ∧ P(?x) ⊈ P�(������������) , the computation 
of starMatch(T2 , N(����������_��_������)) can be 
pruned.   □

5.2  Postponing Cartesian Product Operations

In this section, we first demonstrate the expensive cost 
introduced by our basic algorithm and then illustrate an 
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2 https ://www.w3.org/TR/rdf-schem a/.

https://www.w3.org/TR/rdf-schema/
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efficient solution. Finally, the optimization method will be 
analyzed.

In the initial star matching phase of our basic algorithm 
StarMR, the function map is invoked to match the star T1 , 
where T1 = (r, L) and L = {(p1, l1),… , (pt, lt)} ; then, we can 
obtain the candidate matching set S(li) of every leaf vertex 
li . The matching set S(li) is generated according to the label 
of li matched with leaf vertices over N(v). Next, we can get 
the matching results by doing the Cartesian product opera-
tions on the candidate matching sets of vertices in the star T1 . 
Unfortunately, a majority of matching results cannot contrib-
ute to the final results. In other words, the Cartesian product 
operation is not necessarily done during the star matching 

phase. Even worse, that operation can incur expensive cost 
in addition. Since the Cartesian product operation leads to 
expensive costs, after executing subgraph matching with our 
basic algorithm StarMR, an improvement is proposed to 
postpone the Cartesian product operation.

Let f be a mapping from vertices in a star to the candidate 
matching sets of the corresponding vertices. We use ��(T) 
and ��(P) to denote the matching results of star T and partial 
query graph P, respectively. In order to reduce the intermedi-
ate results cost. We develop an efficient optimization algo-
rithm, denoted by StarMRopt . In our optimization method, 
the initial star matching phase only needs to calculate the 
candidate matching sets of leaves of the star T1.

Algorithm 4: StarMRopt

Input : RDF graph G = (V,E,Σ), A subgraph matching Q: {tp1, tp2, ..., tpn}
Output: The answer set: Ω(Q)

1 K ← StarDecompose(Q); // decompose query graph
2 Ω(Q) ← ∅, t ← 1;
3 while K is not empty do // MapReduce iterations
4 Tt ← K.dequeue();
5 map(∅, N(v));
6 if t > 1 then
7 map(∅, µ) s.t. µ ∈ Ω(Pt−1);
8 reduce(µkey , (Ω1, Ω2) s.t. Ω1 ⊆ Ω(Tt) ∧Ω2 ⊆ Ω(Pt−1));

9 t ← t+ 1;

10 return Ω(Pm);
11 Function starMatchopt(T,N(v)) // Cartesian product can be postponed.
12 if T.r matches vertex v then
13 foreach (pi, li) ∈ T.L do
14 if pi /∈ V ar then
15 S(li) ← {v′ | (pi, v′) ∈ N(v) ∧ li matches v′};
16 else
17 S(li) ← {v′ | ( , v′) ∈ N(v) ∧ li matches v′};

18 f ← {(u, S(u)) | u ∈ V (T )};
19 return f ;

20 Function map (∅, N(v) or f ′ s.t. t > 1) // RDF property filtering is applied.
21 if t = 1 then
22 return (∅, starMatchopt(T1, N(v)));

23 else
24 Vkey : {u1, . . . , uk} ← V (Pt−1) ∩ V (Tt);
25 if value is an adjacency list N(v) in G then
26 f ← starMatchopt(Tt, N(v));

// do f(u1)× · · · × f(uk) to get Ωkey

27 Ωkey ← {f1 ∪ · · · ∪ fk | fi = {(ui, {v})} ∧ ui ∈ Vkey ∧ v ∈ f(ui)};
28 foreach fkey ∈ Ωkey do // f ∈ Ωf

29 return (fkey , f − Vkey);

30 else
31 Ωkey ← {f ′

1 ∪ · · · ∪ f ′
k | f ′

i = {(ui, {v})} ∧ ui ∈ Vkey ∧ v ∈ f ′(ui)};
32 foreach fkey ∈ Ωkey do // f ′ ∈ Ωf ′

33 return (fkey , f ′ − Vkey);

34 Function reduce (fkey , (Ωf , Ωf ′ ))
35 foreach (f, f ′) ∈ Ωf ×Ωf ′ do
36 return (∅, fkey ∪ f ∪ f ′);
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I n  A l g o r i t h m   1 ,  f o r  e a c h  s t a r 
T = (r, L), L = {(p1, l1),… , (pt, lt)} , we do the Cartesian 
product operation {v} × S(l1)… S(lt) to get the matching 
results of the star T over N(v), which is �v(T) . However, 
unlike Algorithm 1 enumerating the matching results of 
each leaf node in detail, the starMatchopt(T ,N(v)) method 
adds (u, S(u)) to a mapping f (line 18). Similarly, the func-
tions map and reduce are also changed. In the first itera-
tion, the function map invokes the starMatchopt(T ,N(v)) 
method and return the mapping f. Meanwhile, in the t-th 
MapReduce iteration, first joining the t-th star Tt with the 
partial query graph Pt−1 ; then, the common vertices key 
sets Vkey ∶ {u1,… , uk} can be obtained. (line 19). The input 
of the function map can be classified into two categories. 
One is an adjacency list N(v) in G; the other is a mapping 
f. The map function does the Cartesian product operation 
f (u1) ×⋯ × f (uk) , where uk ∈ V(Pt−1) ∩ V(Tt) (lines 22–33). 
The reduce function takes (k, v) pairs as the input, and for 
those (k, v) pairs with the same key, the reduce function can 
join them together and emerge a new (k, v) pair. For every 
f ∈ ��(Pm) , we do the remaining Cartesian product opera-
tion f (u�

1
) ×⋯ × f (u�

k
) to get the final matching results �(Q) , 

where u�
k
∈ V(Q) ⧵

⋃
1<t≤m(Pt−1 ∩ V(Tt)) (lines 19–20). 

Although the strategy does not change the complexity of our 
algorithm, they can improve query efficiency significantly. 
We will take an example to further illustrate the optimiza-
tion algorithm.

Example 5 When answer ing Q1 over G1 ,  star-
Match(T �

1
,N(����_����)) obtains the candidate set S(li) 

of every leaf li in T ′
1
 , e.g., S(?y) = {�������_���− ����} . 

We have V(P1) ∩ V(T �
2
) = {?y} . Next, star T ′

2
 is matched, but 

the candidate set of ?y in all N(v) in G1 does not contain 
vertex Natural_Science. Thus, we do not need to do 
the Cartesian product operation S(?z) × S(?y) × S(?w) to get 
�����_����(T

�
1
) , whose cost is prohibitively expensive. The 

more detailed explanation could refer to Figs. 3 and 4.  
 □

6  Experiments

We have carried out extensive experiments on both synthetic 
and real-world RDF graphs to verify the efficiency and scal-
ability of StarMR and compared it with the optimization 
method StarMRopt , the state-of-the-art S2X, and SHARD. 
Our algorithm is orthogonal to the graph partitioning and 
placement strategies in the cluster environment. In particu-
lar, for the implementation of StarMR, we use the default 
partitioner employed by the Hadoop Distributed File System 
(HDFS).

6.1  Settings

The prototype program, which is implemented in Scala using 
Spark, is deployed on an 8-site cluster connected by a gigabit 
Ethernet. Each site has a Intel(R) Core(TM) i7-7700 CPU 
with four cores of 3.60GHz, 16GB memory, and 500GB disk. 
We used Hadoop 2.7.4 and Spark 2.2.0. All the experiments 
are carried out on Linux (64-bit CentOS) operating systems.

We used three RDF datasets, including synthetic data-
set WatDiv,3 LUBM,4 and real-world dataset DBpedia5 in 
our experiments. (1) WatDiv is an RDF benchmark, which 
allows users to define their own datasets and generate test 
datasets with different sizes; (2)LUBM is also a standard 
RDF synthetic benchmark, which is used to generate data-
sets of different scales; (3) DBpedia is a real-world dataset 
extracted from Wikipedia. As listed in Table 2, we sum-
marize the statistics of these datasets. For RDF queries, we 
group them into four categories according to their shapes, 
including linear queries (L), star queries (S), snowflake 
queries (F), and complex queries (C), which are listed in 
Table 3. Regarding WatDiv, it gives 20 basic query tem-
plates. We leveraged 14 testing queries provided by the 
LUBM benchmark. Due to the absence of query templates 
on DBpedia, we designed eight queries, covering the four 
query categories mentioned above.

6.2  Experiments on WatDiv Datasets

In this section, we verify the efficiency and scalability of our 
methods on WatDiv datasets. This section is organized as 
the following orders: (1) brief introduction on WatDiv data-
set; (2) validate the efficiency of the optimization algorithm 
StarMRopt and analyze the experimental results; (3) examine 
the scalability of these methods.

Waterloo SPARQL Diversity Test Suite [2], denoted by 
WatDiv, was developed to measure the performance of an 
RDF data management system, i.e., the RDF data scale and 
the SPARQL queries spectrum can be defined by the user 
themselves. More specifically, WatDiv is composed of a data 
generator and a query generator. We can generate our own 
datasets through a designated dataset description language 
using the data generator. Our experiments were carried out 
on WatDiv1M, WatDiv10M, and WatDiv100M datasets, 
where “1M” indicates the number of triples is one million.

3 http://dsg.uwate rloo.ca/watdi v/.
4 http://swat.cse.lehig h.edu/proje cts/lubm/.
5 http://wiki.dbped ia.org/downl oads-2016-10.

http://dsg.uwaterloo.ca/watdiv/
http://swat.cse.lehigh.edu/projects/lubm/
http://wiki.dbpedia.org/downloads-2016-10
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6.2.1  Efficiency on WatDiv

Experiments were conducted on WatDiv100M to verify the 
query efficiency of our method. As shown in Fig. 5, our 
optimization method StarMRopt has the best query efficiency 
on all 20 queries. The basic method StarMR is also much 
better than S2X and SHARD. The query execution times 
of these 20 queries are given in Table 4. For the query F3 
(resp. C2 ), it can be observed that S2X cannot finish in the 
time limit ( 1 × 104s ), denoted by INF, while StarMRopt and 
StarMR can return the answers within 20s (resp. 28s) and 
65s (resp. 94s), respectively. The average execution speed 

of the remaining 18 queries in StarMRopt is about 11 times 
faster than of that in S2X. Furthermore, the average query 
execution time of StarMRopt covering all the query catego-
ries is about 17 seconds, which is up to 47 times and on 
average 26 times faster than SHARD, i.e., our optimization 
method on average, outperforms S2X and SHARD by an 
order of magnitude over WatDiv100M.

In addition, compared with StarMR, the time of 
StarMRopt is reduced from 44.86% to 74.94%, as listed in 
Table 4. Thus, StarMRopt is able to evaluate the query more 
efficiently. We can observe that StarMRopt tends to be stable 
over all the queries. In contrast, S2X and SHARD fluctuate 
dramatically.

The experimental result demonstrates that the effect of 
optimization strategies in StarMRopt is significant. We ana-
lyze that the reasons include: (1) S2X and SHARD joined 
the intermediate matching results of all triple patterns in 
subgraph and did not leverage any structure and semantic 
information, leading to expensive cost; (2) StarMR did Car-
tesian product operations in the star matching phase, which 
may lead to expensive cost; and (3) in StarMRopt , a part of 
invalid input data were pruned by utilizing RDF properties 
embedded in RDF graphs, and a large number of Cartesian 
operations were postponed and reduced.

6.2.2  Scalability on WatDiv

We compared StarMRopt with StarMR, S2X, and SHARD. 
The scalability comparison experiments were carried out on 
various scale WatDiv datasets and different experimental 
cluster sites.

Different Size of Datasets For the reason that S2X cannot 
finish in the time limit ( 1 × 104 s ) on query F3 and C2 , we 
conducted experiments on WatDiv datasets over the other 
18 queries except them. Moreover, the average times of 

Table 2  Datasets

Datasets |V| |E|

LUBM4 78,595 493,844
LUBM40 864,238 5,495,742
LUBM400 8,675,133 55,256,074
WatDiv1M 158,118 1,109,678
WatDiv10M 1,052,571 10,916,457
WatDiv100M 10,250,947 108,997,714
DBpedia 6,060,648 23,509,250

Table 3  Queries

Query L S F C

LUBM Q1,Q3,Q5,
Q6,Q10,Q11,
Q13,Q14

Q4 Q7,Q8,
Q12

Q2,Q9

WatDiv L1,L2,L3,
L4,L5

S1, S2, S3,
S4, S5, S6,
S7

F1,F2,F3,
F4,F5

C1,C2,
C3

DBpedia L1,L2 S1, S2 F1,F2 C1,C2

Fig. 5  The results on different 
queries over WatDiv100M
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Table 4  The query times (in s) of StarMRopt , StarMR, S2X, and SHARD on WatDiv100M

Query S1 S2 S3 S4 S5

StarMRopt 17.773 14.973 14.606 15.331 14.698
StarMR 54.741 43.882 43.884 53.696 45.313
S2X 134.380 108.325 100.568 147.862 104.754
SHARD 794.303 376.891 361.489 365.994 346.176

Query S6 S7 C1 C2 C3

StarMRopt 14.096 16.565 19.667 27.144 24.712
StarMR 44.165 53.858 66.647 93.888 44.820
S2X 137.311 147.112 747.289 INF 244.216
SHARD 272.885 266.494 692.901 890.009 664.440

Query L1 L2 L3 L4 L5

StarMRopt 15.987 15.403 14.998 14.497 14.240
StarMR 54.636 54.379 44.281 44.476 56.826
S2X 206.564 347.468 100.222 101.839 375.845
SHARD 278.2577 277.2127 209.261 187.220 268.5197

Query F1 F2 F3 F4 F5

StarMRopt 16.092 16.081 19.954 22.118 19.987
StarMR 52.733 55.855 64.719 75.001 64.818
S2X 137.796 157.659 INF 180.965 248.616
SHARD 531.6827 698.4937 517.9577 785.1687 522.8997

Fig. 6  Scalability on WatDiv 
datasets
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each query category were calculated, as shown in Fig. 6. 
When changing the size of datasets from WatDiv1M to Wat-
Div100M, query times of all four methods increased and 
StarMRopt was always the best one. We can observe that 
with the scale of the datasets increasing, the query times of 
S2X and SHARD increased dramatically. More specifically, 
the average growth rate of S2X and SHARD were 95.8% 
and 72.7%, respectively. In contrast, for the two methods 
StarMRopt and StarMR, the query time growth rate changed 
slightly. We analyzed the low performance of S2X and 

SHARD was that the expensive cost incurred by abundant 
intermediate results.

Compared with StarMRopt , the growth rate of query 
times in StarMR was higher than that of StarMRopt . As 
shown in Fig.  6, the performance of SHARD and S2X 
dropped significantly with the size of datasets increasing, 
especially SHARD.

Different Numbers of Cluster Sites Extensive experiments 
were carried out on the WatDiv100M dataset with the num-
ber of cluster sites varying from 4 to 8. During these experi-
ments, we randomly selected one query from each of the four 

Fig. 7  Scalability on cluster 
sites
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Fig. 8  Efficiency on LUBM40
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query categories, i.e., L4, S4,F2 , and C3 . As shown in Fig. 7, 
the experimental results verified our intuition that query 
times of all these four methods decreased as the number of 
cluster sites increased. This is because when the number 
of sites increased, the degree of parallelism also increased. 
Although with the number of sites increasing, the speedup 
ratios of S2X and StarMRopt are comparative; the perfor-
mance of StarMRopt is stable for selective queries and the 
query times of StarMRopt are far less than that of S2X. For 
SHARD, we can observe that the query times of category F 
and S are around 1000 s, and in all the query categories, the 
query time of SHARD dropped dramatically from site 4 to 
site 5. It demonstrated that the performance of SHARD was 
extremely dependent on the experimental environment.

6.3  Experiments on LUBM

The Lehigh University Benchmark [10], denoted by LUBM, 
is a synthetic dataset, which aims at evaluating the perfor-
mance and capability of various knowledge base systems. 
To verify the stability of StarMRopt , extensive experiments 
were conducted not only on the WatDiv datasets but also on 
the standard benchmark LUBM. In this paper, we use the 
LUBM datasets scaling from LUBM4 to LUBM400. The 

following experiments focus on two aspects: the efficiency 
and scalability of these methods.

6.3.1  Efficiency on LUBM

The efficiency validating experiments were conducted on the 
LUBM40 dataset. Figure 8 compared our proposed methods 
StarMRopt and StarMR with the other two methods.

We can observe that StarMRopt outperformed StarMR, 
S2X, and SHARD for all query categories. The performance 
of S2X was better than SHARD for most queries, for which 
we analyzed the reason was that SHARD cannot process 
several triple patterns in a single MapReduce job. However, 
when answering the query Q2 (resp. Q9 ), S2X terminated 
with errors. It was because that the query process produced 
too many intermediate results, thus incurring expensive over-
head for S2X. While StarMRopt and StarMR can return the 
answers within 10.6s (resp. 19.5s) and 12.5s (resp. 13.2s), 
respectively. The average runtimes of the remaining 12 que-
ries in StarMRopt were about 5 times faster than of that in 
S2X, and about 11 times faster than of that in SHARD.

In addition, the average query runtime of StarMRopt cov-
ering all the query categories was about 7 seconds, which 
was up to 29 times and in average 12 times faster than 

Fig. 9  Scalability on LUBM 
datasets
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SHARD. Overall, the experimental results clearly demon-
strated the superior performance and stability of our optimi-
zation method StarMRopt , which was an order of magnitude 
faster than other methods for all queries.

6.3.2  Scalability on LUBM

Similar to the previous scalability-examining experiments on 
the WatDiv datasets, we carried out extensive experiments 
on various size of LUBM datasets, i.e., LUBM4, LUBM40, 
and LUBM400. In addition, we verified the scalability of our 
methods by changing the number of sites. Furthermore, we 
selected four queries, Q4 , Q7 , Q9 , Q10 , which are covering all 
the query categories. The intuitive experimental results are 
shown in Figs. 9 and 10.

Different Size of Datasets We evaluated the scalability 
of the StarMRopt by changing the scale of LUBM data-
sets. As shown in Fig. 9, the experimental results showed 
that the method we proposed significantly outperforms 
S2X and SHARD. We can observe that the query perfor-
mance of all the queries decreased with the scale of datasets 
increasing. When S2X answers query Q9 over LUBM40 and 
LUBM400, some errors occurred, which revealed that S2X 
cannot complete the query and often aborted. In contrast, the 
runtimes of our methods were significantly less than S2X 
and SHARD covering all queries. The average runtime of 
StarMRopt covering all the query categories was about 18 
seconds, which was up to 23 times faster than that of S2X, 

and 13 times faster than that of SHARD. We analyze the 
reason can be that our optimization method exploited the 
structure features, semantic information, and heuristic algo-
rithms, which can reduce the expensive overhead incurred 
by the intermediate results.

Different Numbers of Cluster Sites The scalability of 
each method was evaluated on LUBM400 dataset with the 
number of cluster sites varying from 4 to 8, as shown in 
Fig. 10. It was intuitive that for most queries, the runtimes 
decreased with the cluster sites increasing. We analyzed that 

Fig. 10  Scalability on cluster 
cites
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more cluster sites generate more degree of parallelism so 
that there were more threads to execute query tasks. How-
ever, the runtimes of S2X and SHARD decreased from 4 
to 7, but increased from 7 to 8 instead. After an in-depth 
analysis, we concluded that when the parallelism number 
increased to a certain extent, the expensive communication 
cost became the bottleneck.

In addition, S2X cannot complete queries Q9 on all the 
number of cluster sites, the result validated the conclusion 
that the performance of S2X cannot beat our methods. To 
summarize, our proposed methods achieved better perfor-
mance than S2X and SHARD.

6.4  Experiments on the Real‑World Dataset

To evaluate the efficiency and scalability of StarMRopt on a 
real-world dataset DBpedia, extensive experiments were car-
ried out. Our experimental results are shown in Figs. 11 and 
12. More specifically, we compared our proposed methods 
with the close competitors, i.e., S2X and SHARD. On the 
one hand, we used the average runtimes to verify the effi-
ciency; on the other hand, we changed the number of cluster 
sites to examine the scalability of these methods.

6.4.1  Efficiency on DBpedia

Extensive experiments were carried out to verify the query 
efficiency of our method on the real-world datasets DBpedia. 
Figure 11 compared the different algorithms over DBpedia 
covering all query categories.

We can observe that SHARD showed a good performance 
for all the query types over DBpedia dataset, for the rea-
son that the query time of it tended to be more stable than 
S2X. But SHARD was not able to beat our methods for any 
query. As shown in Fig. 11, StarMRopt also demonstrated 
the best query efficiency on all queries over DBpedia, and 
StarMR performed much better than the other two methods, 
i.e., S2X and SHARD. When answering C2 , i.e., the query 
Q1 mentioned in Sect. 1, S2X terminated with errors. Thus, 
S2X cannot efficiently evaluate the complex query involving 
a large number of intermediate results. For the remaining 
seven queries, the execution speeds in StarMRopt was about 
4 to 469 times faster than that in S2X, and about 7 to 20 
times faster than that in SHARD. Compared with StarMR, 
the time of StarMRopt was reduced from 44.19% to 67.48%, 
i.e., the optimization effect on DBpedia was prominent. So in 
summary, the experimental results in Fig. 11 demonstrated 
that StarMRopt reduced invalid input data and postponed 
Cartesian product operations by a large margin.

Fig. 12  Scalability on DBpedia
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From the experimental results, we can observe that the 
number of matching subgraphs does have an effect on the 
matching efficiency. If the selectivity is low, then the num-
ber of matching subgraphs is high; the execution time was 
long, such as the complex query F2 ; for the high selectivity, 
the number of matching subgraphs is low, and it takes less 
execution time for the query, such as the query L2.

6.4.2  Scalability on DBpedia

We conducted experiments on DBpedia to compare the scal-
ability of these methods, with the number of cluster sites 
varying from 4 to 8; the experimental result is shown in 
Fig. 12.

The scalability experiments were conducted on four que-
ries, i.e., L1, S1,F1 , and C1 over DBpedia. Similarly, query 
times of these four methods decreased with the number of 
cluster sites varying from 4 to 8, as shown in Fig. 12. Fur-
thermore, the optimization method StarMRopt was an order 
of magnitude faster than SHARD on average for all four 
query categories, even with repeated query execution. An 
interesting observation was that the queries L1 and C1 of 
S2X did not decrease with the number of site increasing, 
which counters our intuition. According to our analysis, the 
reason can be that when the degree of parallelism increased 
to a certain extent, the cost of communication increased and 
gradually became the main factor. In addition, the speedup 
ratio of StarMR was about 1.1 times of S2X.

7  Conclusion

In this paper, we proposed the StarMR star-decomposition-
based query processor for efficiently answering subgraph 
matching queries on big RDF graph data using MapReduce. 
Moreover, we also developed two optimization strategies, 
including RDF property filtering and postponing Cartesian 
product operations, to improve the basic StarMR algo-
rithm. Our extensive experimental results on both syn-
thetic and real-world datasets have verified the efficiency 
and scalability of our method, which outperforms S2X and 
SHARD by one order of magnitude. In the future, we will 
investigate how our approach can be adapted to the top-k 
SPARQL BGP queries. Meanwhile, we will investigate how 
the multi-SPARQL query settings can be improved by using 
our approach.
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