
Vol:.(1234567890)

Data Science and Engineering (2019) 4:24–43
https://doi.org/10.1007/s41019-019-0090-z

1 3

Efficient Subgraph Matching on Large RDF Graphs Using MapReduce

Xin Wang1,2 · Lele Chai1 · Qiang Xu1 · Yajun Yang1,2 · Jianxin Li3 · Junhu Wang4 · Yunpeng Chai5

Received: 15 January 2019 / Revised: 20 March 2019 / Accepted: 23 March 2019 / Published online: 4 April 2019
© The Author(s) 2019

Abstract
With the popularity of knowledge graphs growing rapidly, large amounts of RDF graphs have been released, which raises
the need for addressing the challenge of distributed subgraph matching queries. In this paper, we propose an efficient dis-
tributed method to answer subgraph matching queries on big RDF graphs using MapReduce. In our method, query graphs
are decomposed into a set of stars that utilize the semantic and structural information embedded RDF graphs as heuristics.
Two optimization techniques are proposed to further improve the efficiency of our algorithms. One algorithm, called RDF
property filtering, filters out invalid input data to reduce intermediate results; the other is to improve the query performance
by postponing the Cartesian product operations. The extensive experiments on both synthetic and real-world datasets show
that our method outperforms the close competitors S2X and SHARD by an order of magnitude on average.

Keywords Star decomposition · Subgraph matching · MapReduce · RDF graphs

Abbreviations
CQ Conjunctive query
BGP Basic graph patterns
RDF Resource Description Framework
RDFS Resource Description Framework Schema
HDFS Hadoop Distributed File System
LUBM Lehigh University Benchmark
WatDiv Waterloo SPARQL Diversity Test Suite

1 Introduction

More than one decade ago, the Semantic Web was pro-
posed by Berners-Lee et al. [3], which now has become a
series of W3C standards1 in order to realize the machine

understandable World Wide Web. The semantic links
among resources on the traditional Web can be explicitly
represented on the Semantic Web. In the meanwhile, the
graph data model has been more and more popular to man-
age graph and network data in various domains. Compared
with the relational model, the graph model can more natu-
rally characterize relationships among entities in the real
world. In particular, the Resource Description Framework
(RDF) [16] is a mainstream graph model, which has become
the de-facto standard for representing and exchanging data
on the Semantic Web. In recent years, with the campaign
of the Linked Open Data [4] initiative, the scale of RDF
graph data has grown exponentially. Hence, it is essential
to develop efficient storage and query mechanism for large-
scale RDF graphs.

The Resource Description Framework, a graph-based
data model, is commonly used to represent and organize
resources in knowledge graphs because of its flexibility. An
RDF data are a collection of triples (s, p, o), each of which
represents a statement of a predicate p between a subject s
and an object o. An RDF triple can be naturally viewed as
an edge with s and o as vertices. Thus, an RDF graph can
be represented as a labeled directed graph, e.g., the example
RDF graph G1 excerpted from DBpedia dataset in Fig. 1. It
describes some information about philosophers. Due to the
flexibility of RDF data, they are widely applied in various
fields, such as science, bioinformatics, business intelligence,

 * Yajun Yang
 yjyang@tju.edu.cn

1 College of Intelligence and Computing, Tianjin University,
Peiyang Park Campus, Tianjin, China

2 Tianjin Key Laboratory of Cognitive Computing
and Application, Tianjin, China

3 School of Information Technology, Deakin University,
Melbourne, Australia

4 School of Information and Communication Technology,
Griffith University, Gold Coast, Australia

5 School of Information, Renmin University of China, Beijing,
China 1 https ://www.w3.org/stand ards/seman ticwe b/.

http://orcid.org/0000-0002-0824-2931
http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-019-0090-z&domain=pdf
https://www.w3.org/standards/semanticweb/

25Efficient Subgraph Matching on Large RDF Graphs Using MapReduce

1 3

and social networks [12]. In real world, the size of RDF data
often reaches hundreds of millions of triples.

Subgraph matching is widely considered as one of the
fundamental mechanisms for querying large-scale graph
data. SPARQL is the standard query language for RDF
graphs endorsed by W3C [5], in which basic graph patterns
(BGP) are realization of subgraph matching. Theoretically,
the semantics of SPARQL BGP is equivalent to the problem
of subgraph homomorphism [18], whose evaluation com-
plexity is known to be NP-complete [7]. Therefore, how to
efficiently answer subgraph matching queries (i.e., BGP)
over big RDF graphs has been broadly recognized as a chal-
lenging problem.

Subgraph matching aims at finding all the satisfying
matching subgraphs over the large data graph. More specifi-
cally, given a data graph, i.e., an RDF graph G and a query
graph Q, subgraph matching will fetch all the subgraphs over
G that satisfying all the triples contained in Q, which is a
conjunctive query (CQ) on G. For instance, the following
CQ Q1 consists of two triple patterns over G1.

Currently, there has been some research works on sub-
graph matching queries over RDF data in a distributed
environment. One category of methods is based on the rela-
tional schema [8, 11, 14, 19, 22], in which RDF data are

(1)Q1(?x, ?y) ← (����_����, �����������, ?x) ∧ (����_����, ������������, ?�)

modeled as a set of triples and stored in relational tables
or a variant relational schema. All of these methods do not
consider inherent graph-like structures of RDF data. When
processing complex subgraph matching queries, excessive
join operations over relational tables are needed, which may
incur expensive cost. In contrast, the other category of meth-
ods manages RDF data in native graph formats [17, 20, 28]
and represents subgraph matching queries as query graphs,
which typically employs adjacency lists to store RDF data.
Thus, for a subgraph matching problem, how to reduce the
enormous intermediate results is crucial.

In [24], query graphs are decomposed into stars (trees of
depth 1). Lai et al. pointed out that the star-join algorithm
in [24] suffers from scalability problems due to the genera-
tion of a large number of matches when evaluating a star
with multiple edges [15]. The reason for this issue is that
in unlabeled, undirected graphs, they focused on it is very
likely that the large combination of intermediate results is
generated due to the lack of distinguishable information
on vertices and edges. Thus, they proposed the so-called

TwinTwigJoin MapReduce [6] algorithm, where a TwinTwig
is either a single edge or two incident edges of a vertex.
Unlike unlabeled and undirected graphs in [15, 24], RDF
graphs have URIs as the unique vertex labels and directed

Greece Crook Thinking University of Vienna

Austria

Chalcis
Fereydon

Logic Weininger

Arthur

Arndt

Aristotle

Kaut

Drunk Forest

Ecnomic

Plato

University of Bonn

Natural Science

Economy

Adam Smith Karl Marx

Organisation

Philosophy
University of Glagow

Harold Laski Scotland

United Kingdom

London

Labour relation

co
un

tr
y literGenreof

genreof

mainI
nter

est
mainInterest

co
un

tr
y

alm
aM

ate
r

influencedBy

deathPlace

influencedB
y

deathPlace

influencedBy

in
flu

en
ce
dB

yge
nr
eo

f
lit
er
G
en

re
of

influencedBy

ma
inIn

tere
st

de
at
hP

la
ce

almaMater

mainInterest

fie
ld
of

country

al
m
aM

at
er

de
at
hP

la
ce

mainInterest

rdf:type

mainInterest

lit
er
G
en

re
of

cou
ntry

influencedBy

Fig. 1 An example RDF graph G
1
 excerpted from DBpedia dataset

26 X. Wang et al.

1 3

edges. Thus, the problem concerned in [15] does not exist
over RDF graphs. Therefore, it is reasonably safe to exploit
the more holistic star-shaped structures other than just twin
twigs as decomposition units of query graphs to minimize
the amount of intermediate results.

To this end, we propose a new star-based query decompo-
sition strategy, in which the star retains more holistic graph
structures of query graphs than the TwinTwig method [15].
Thus, our approach can be completed in fewer MapReduce
rounds. In our method, in order to evaluate subgraph matching
queries more efficiently, query graphs are decomposed into a
set of stars by using the semantic and structural information
embedded in RDF graph as heuristics (i.e., h values defined in
this paper), to evaluate subgraph matching queries in MapRe-
duce. In addition, in order to reduce the intermediate results,
the matching order of stars is determined by a greedy strategy.

Our main contributions include: (1) we propose an
efficient and scalable distributed algorithm based on star
decomposition, called StarMR, for answering subgraph
matching queries on RDF graphs; (2) two optimization
strategies of StarMR are devised, one of which employ-
ing the properties in RDF graphs to filter out invalid input
data in MapReduce iterations, the other postponing part of
Cartesian product operations to the final step of MapReduce
to reduce a part of unpromising Cartesian product opera-
tions; and (3) extensive experiments on both synthetic and
real-world RDF graphs have been conducted to verify the
efficiency and scalability of our method. On average, the
experimental results show that StarMR outperforms the
state-of-the-art method by an order of magnitude.

The rest of this paper is organized as follows. Section 2
briefly reviews related work. In Sect. 3, we introduce pre-
liminary definitions on RDF graphs and subgraph matching
queries. In Sect. 4, we describe in detail how to decom-
pose CQ queries, determine the matching order of stars,
and match CQ queries using MapReduce. We then present
two optimization strategies in Sect. 5. Section 6 shows our
extensive experimental results, and we conclude in Sect. 7.

2 Related Work

The existing research work on distributed/parallel SPARQL
queries over large-scale RDF graphs can be classified as
follows:

Relational Schema Approach In the context of the urgent
need for Web-scale distributed query systems [29], SHARD
[19] is designed and developed using the MapReduce frame-
work to address the scalability limitation issue. In terms of
data persistence, the metadata of the system is persisted in the
Hadoop Distributed File System [23]. In that case, the query
graph is decomposed into the triple sets. More specifically,
SHARD handles SPARQL queries over RDF data for triple

stores which need to iterate over query statements to bind
variables to vertices in data graphs while satisfying all of
the query constraints. Meanwhile, to accelerate processing
the subsequent similar queries, certain relevant intermediate
results might not be removed immediately. Each round of
MapReduce only adds one query clause with the join opera-
tion in [19]. Although SHARD has a significant improve-
ment in enhancing the datasets scalability with the aid of
Hadoop, due to no plans for query processing, a large number
of Hadoop jobs are required to execute the whole procedure.

Similarly, HadoopRDF [14] features efficiency and scal-
ability in managing large amounts of RDF data. For the data
stored in the Hadoop cluster, the framework utilizes a schema
to convert various format RDF data to N-triples. The standard
data conversion can bring great benefits for the later process-
ing. Moreover, HadoopRDF divides RDF triples based on the
predicates into multiple smaller files. In this way, for a user
query, if the predicate position is not a variable, the corre-
sponding file can be matched directly; otherwise, because the
predicate is a variable, HadoopRDF cannot make sure which
type of the object belongs to. To avoid searching all the files,
another file organization category named object splitting is
exploited. The object splitting method further classifies files
according to the object type. Meanwhile, by combining the
predicate and object splitting approach, the query processing
can speed up. Specifically, the query retrieval involves three
phases. First, regarding the subgraph matching query clause
as the input and passing it to the first component named input
selector. Second, making use of the proposed greedy algo-
rithm to guarantee the generated query plan as the optimal
one. Finally, joining the relevant intermediate items together
and feeding the final results back to the user. Moreover, a
triple pattern in SPARQL queries cannot simultaneously take
part in more than one join in a single Hadoop job by using
the MapReduce framework.

The abovementioned two methods do not employ any
structural information of query graphs, thus a large number
of join operations may incur expensive costs. Furthermore,
Virtuoso [8], supporting RDF in a native RDBMS, also
model RDF data as a set of triples. TriAD [11], using a cus-
tom MPI protocol, employs six SPO permutation indexes,
partitions RDF triples into those indexes, and uses a local-
ity-based summary graph to speed up queries. Many cur-
rent RDF query approaches are extremely dependent on the
query pattern shapes, i.e., for certain query pattern shapes,
the query processing can execute quite well. While the query
performance drops for other query shapes. Hence, Schätzle
et al. [22] proposed a relatively efficient query processing
system named S2RDF, which does not depend on the query
pattern shapes anymore. In addition, this approach extends
the vertical partitioning [1] methods and Join Indices [25] to
preprocess the original RDF data. More specifically, S2RDF
introduces the relational partitioning model ExtVP to store

27Efficient Subgraph Matching on Large RDF Graphs Using MapReduce

1 3

RDF data over the Spark parallel framework, by which it
can effectively minimize the query input size. Nevertheless,
as for modification operations, the deletion operation of the
triples might result in a decline in query performance and
stability. In addition, the cost of the semi-join preprocessing
in [22] is prohibitively expensive.

Native Graph Approach The star-decomposition-based
searching methods proposed by Yang et al. [26] is about
approximate matching, which is devoted to top − k star
query. In [26], the query decomposition phase is to decom-
pose the subgraph query to a set of star queries, and for each
decomposed star query, the matches in decreasing order of
matching score and the best match can be picked out. In [28],
RDF data are modeled in its native graph form, a key-value
store which saves node identifiers as the keys, and the adja-
cency lists of nodes as the values. Trinity.RDF [28] lever-
ages graph exploration to reduce the volume of intermediate
results, while the final results need to be enumerated at the
single master node using a single thread. S2X [20] builds
on GraphX [9], a distributed graph processing framework
in top of Spark [27], to implement query graph matching of
SPARQL. In S2X, a query graph is also decomposed into
triple patterns which is similar to the methods in [14, 19].
All of these triple patterns are matched first; then, inter-
mediate results are gradually discarded by iterative com-
putation; finally, the remaining matching results are joined,
which may lead to potentially large intermediate results. In
addition, Peng et al. adopt a partial evaluation and assembly
framework to perform SPARQL queries based on gStore
[30], a graph-based SPARQL query engine using VS*-tree
indexes [17]. In their method, each slave machine evaluates
the query in the partial computation phase, and then, in the
assembly phase, a large number of local partial matches are
sent to the coordinator and joined together to obtain the final
results, which may become a performance bottleneck when
the amount of partial matches are large.

Distributed Systems In the era of Big Data, the distributed/
parallel technique has become an indispensable tool for large-
scale knowledge data management. In recent years, plentiful
distributed systems and frameworks for large-scale graph data
have been proposed. For instance, YARS2 [13] is a representa-
tive knowledge graph managing system based on MapReduce.
YARS2 is a distributed semantic web search engine, which
integrates data retrieving, collecting, indexing, and brows-
ing together. It plays a pivotal role in managing large-scale
graph data models and enabling interactive query answering.
The system consists of several components: crawler, indexer,
object consolidator, index manager, query processor, ranker,
and user interface. The crawler is a pipelined architecture for
crawling diverse source data into a uniform schema, and the
indexer is a general framework for managing keyword indices
and statement indices; then, the query processor will generate
the optimal query plan for answering the queries. Then, the

corresponding results are retrieved to users in the descending
orders. Another research work Sempala [21], which is an RDF
graph data query engine based on distributed SQL-on-Hadoop
database Impala and Parquet, distributed file format, which
provides interactive-time SPARQL query processing effi-
ciently. In addition, Lai et al. proposed a MapReduce-based
distributed efficient subgraph enumeration algorithm based
on TwinTwig structure decomposition, but the algorithm is
only used for undirected unlabeled graphs.

In this paper, we focus on the analytical processing scenario
of RDF graphs using MapReduce which does not take advan-
tage of any prebuilt indexes. Though building indexes can defi-
nitely accelerate lookups with high selectivity, it will not ben-
efit analytical processing in which almost all data are accessed.
So, it is unfair to compare our approach with those based on
intensive indexes, such as S2RDF [22], the distributed gStore
system [17]. In our method, (1) we store RDF triples using
the adjacency list scheme; (2) a star-decomposition strategy
with heuristic information is proposed, which is able to keep
more holistic structures of query graphs; (3) as to optimization
strategies, we employ RDF properties to filter out unpromising
input data and postpone Cartesian product operations.

3 Preliminaries

In this section, we introduce several basic background defi-
nitions about RDF graphs and subgraph matching queries
which are used in our algorithms.

Definition 1 (RDF graph) Let U and L be the disjoint
infinite sets of URIs and literals, respectively. A tuple
(s, p, o) ∈ U × U × (U ∪ L) is called an RDF triple, where s
is the subject, p is the predicate, and o is the object. A finite
set of RDF triples is called an RDF graph.

Given an RDF graph G, let V ,E,� denote the set of
vertices, edges, and edge labels, respectively. Formally,
V = {s ∣ (s, p, o) ∈ G} ∪ {o ∣ (s, p, o) ∈ G} , E ⊆ V × V , and
� = {p ∣ (s, p, o) ∈ G} . The function lab: E → � returns the
labels of edges in G.

Definition 2 (Query graph) Given an RDF graph G, a
CQ Q over G is defined as: Q(z1,… , zn) ←

⋀
1≤i≤m tpi ,

where tpi = (xi, ai, yi) is a tr iple pattern, xi, yi ∈
V ∪ Var , ai ∈ � ∪ Var , zj is a var iable and zj ∈
{xi ∣ 1 ≤ i ≤ m} ∪ {yi ∣ 1 ≤ i ≤ m} . A CQ Q is also referred
to as a query graph GQ.

Let V(Q) and E(Q) be the set of vertices and edges in GQ ,
respectively. For each vertex u ∈ V(Q) , if u ∈ Var , then u
can match any vertex v ∈ V ; otherwise, u only can match the
vertex v ∈ V whose label is the same as that of u.

28 X. Wang et al.

1 3

Definition 3 (Subgraph matching) The semantics of a CQ Q
over an RDF graph G is defined as: (1) � is a mapping from
vertices in x̄ and ȳ to vertices in V, where x̄ = (x1,… , xm) ,
ȳ = (y1,… , ym) ; (2) (G,𝜇) ⊨ Q iff (�(xi),�(ai),�(yi)) ∈ E
and the labels of xi , ai and yi are the same as that of
�(xi),�(ai) and �(yi) , respectively, if xi , ai , yi ∉ Var ; and
(3) �(Q) is the set of 𝜇(z̄) , where (z̄) = (z1,… , zn) , such that
(G,𝜇) ⊨ Q . �Q is the answer set of the subgraph matching
query GQ over G.

Some definitions about mappings are needed. Two
mappings �1 and �2 are called compatible denoted as
�1 ∼ �2 , iff every element v ∈ dom(�1) ∩ dom(�2) satis-
fies �1(v) = �2(v) , where dom(�i) is the domain of �i . Fur-
thermore, the set union of two compatible mappings, i.e.,
�1 ∪ �2 , is also a mapping.

4 The StarMR Algorithm

In this section, the distributed adjacency list storage strategy
for an RDF graph will be first introduced. Then, we pre-
sent how to decompose the query graph into a set of stars
and determine the matching order of these stars. Finally, we
describe in detail how to implement the subgraph matching
query using MapReduce in a left-deep-join framework.

4.1 Storage Schema

In this paper, the RDF graph G is stored in a distrib-
uted adjacency list. For each vertex v ∈ V , we use N(v)
to denote the neighbor information of vertex v, where
N(v) = {(pi, v

�
i
) ∣ (v, pi, v

�
i
) ∈ G} . For example, the adjacency

list storage schema of the RDF example graph G1 is given
in Table 1.

Taking the RDF graph G1 in Sect. 1 as an example, all
the vertices appeared in the subject positions are stored in

the first column, all the neighbor vertices of each subject
vertex are stored in the set of N(v). For example, the entity
London has one outgoing edges, and its neighbor set is { ⟨
country,United_Kingdom⟩}.

4.2 Star Matching

In this paper, the minimum matching unit is a star in our
method, and the RDF graph G is stored in adjacency lists.
Next, we give the definition of star.

Definition 4 (Star) A star is a tree of height one, denoted
by T = (r, L) , where (1) r is the root of T; and (2) L is a set
of 2 tuples (pi, li) , i.e., li is a leaf of T and (r, pi, li) is an edge
from r to li . Let V(T) and E(T) be the set of nodes and edges
in T, respectively.

When matching a star T on the adjacency list of RDF
graph, if the root vertex of star T can be well matched on one
of the subject vertices of the adjacency list first, the matching
process will not be terminated. Then, the star T will continue
matching the leaf vertices li on N(v) and once matched, we can
obtain the sets of all the matching vertices, which are defined
as the candidate sets S(li) in this paper. Next, we will present
the detailed process of a star matching on an adjacency list.
And the star matching algorithm is listed as follows.

Table 1 The adjacency list of RDF graph G
1

v N(v)

Karl_Marx {⟨mainInterest,Natural_Science⟩,
⟨mainInterest,Labour_relation⟩,
⟨influencedBy,Aristotle⟩,
⟨almaMater,University_of_Bonn⟩,
⟨influencedBy,Adam_Smith⟩,
⟨deathPlace,London⟩ }

⋯ ⋯

London { ⟨country,United_Kingdom⟩ }

Algorithm 1: StarMatch(T,N(v))
Input : Star: T = (r, L), where L = {(p1, l1), . . . , (pt, lt)}, N(v), v ∈ V
Output: Matching results of T over N(v): Ωv(T) = {µ1, µ2, ..., µn}

1 Ωv(T) ← ∅;
2 if T.r matches vertex v then
3 foreach (pi, li) ∈ T.L do // the candidate set S(li) of leaf li
4 if pi /∈ V ar then
5 S(li) ← {v′ | (pi, v′) ∈ N(v) ∧ li matches v′} ;

6 else // is a wildcard
7 S(li) ← {v′ | (, v′) ∈ N(v) ∧ li matches v′} ;

// do Cartesian product operation {v} × S(l1) . . . S(lt) to get Ωv(T)
8 Ωv(T) ← {µ ∪ µ1 . . . µt | µ = {(T.r, v)} ∧ µi = {(li, v′)}, li ∈ T.L ∧ v′ ∈ S(li)};
9 return Ωv(T);

29Efficient Subgraph Matching on Large RDF Graphs Using MapReduce

1 3

Algorithm 1 will be run in the following steps: (1) first
matches the root T.r with the vertex v (line 2); (2) then
obtains the candidate matching set of every leaf (lines 3–7);
(3) next does the Cartesian product operations on the can-
didate matching sets of vertices in the star T to get match-
ing results (line 8). Finally, StarMatch(T, N(v)) returns the
matching results of the star T over N(v) (line 9), and �(T) is
the union of �v(T) , where v ∈ V .

4.3 Star Decomposition of Query Graphs

Before matching the subgraphs in an RDF graph, it is neces-
sary to decompose the query graph into the minimum match-
ing unit stars. Next, we give the definition of star decom-
position and explain why the matching orders are crucial.

In addition, we propose an effective approach to reduce the
number of intermediate results, which leverages the user-
defined heuristic information h value.

Definition 5 (Star decomposition) The star decomposition
of a CQ Q = {tp1,… , tpn} is denoted as D = {T1,… , Tm} ,
where (1) Ti is a star; (2) Ti.r ≠ Tj.r, Ti, Tj ∈ D ∧ i ≠ j ;
(3) E(Ti) ∩ E(Tj) = �, Ti, Tj ∈ D ∧ i ≠ j ; a n d (4) ⋃

1≤i≤m E(Ti) = E(Q).

Example 1 Consider the example query Q1 over the RDF
graph G1 in Sect. 1, the query graph GQ1

 of Q1 is shown in
Fig. 2. Moreover, D is the star decomposition of GQ1

 which
contains three stars, T1 , T2 , and T3 . □

GQ1

?h ?k

?x ?y ?w

?z ?d ?g

in
flu

en
ce
dB

y

infl
ue
nc
ed
By

mainInterest literaryGenreof

genreof

al
m
aM

at
er deathPlace

country

D

?y

?w

?g

ge
nr
eo

f
lit
er
ar
yG

en
re
of

T1 (T ′
2)

?x

?h ?k

?y

?d?z

in
flu

en
ce
dB

y

infl
ue
nc
ed
By

mainInterest

deathPlace

al
m
aM

at
er

T2 (T ′
1)

?z ?d
country

T3 (T ′
3)

P

?x

?h ?k

?y

?d?z

in
flu

en
ce
dB

y

infl
ue
nc
ed
By

mainInterest

deathPlace

al
m
aM

at
er

P1

?h ?k

?x ?y

?w?z ?d

?g

in
flu

en
ce
dB

y

in
flu
en
ce
dB
y

mainInterest
literaryGenreof

genreof

al
m
aM

at
er deathPlace

P2

?h ?k

?x ?y

?w?z ?d

?g

in
flu

en
ce
dB

y

in
flu
en
ce
dB
y

mainInterest
literaryGenreof

genreof

al
m
aM

at
er deathPlace

country

P3

Fig. 2 The query graph and star decomposition of query Q
1

30 X. Wang et al.

1 3

After obtaining the query decomposition D of Q1 , there
exist six matching orders. According to Algorithm 1, stars
T1, T2 , and T3 over G1 have 2, 2, and 4 matching results,
respectively. Consider the matching order T1T3T2 , there
exists eight intermediate results by joining the matching
results of star T1 and T3 , because these two stars do not share
any common vertex. However, another matching order
T2T1T3 only generates one intermediate result. In other
words, the matching order of stars has a significant effect
on the performance of queries.

We leverage the structure information and semantics
in RDF graphs to decompose the query graph into stars
and give a matching order to reduce the number of inter-
mediate results using a greedy strategy. In particular, we
define h value as the heuristic information. The func-
tion fre: � → ℕ gets the frequency of a predicate p in an
RDF graph G, where ℕ is the set of natural numbers and
fre(p) = |{(si, p, oi) ∣ (si, p, oi) ∈ G}| . Then, for a query Q
over G, let P(u) be the set of properties (a.k.a., predicates) of
vertex u in Q, i.e., P(u) = {pi ∣ (u, pi, u

�
i
) ∈ Q} . The h value

of each vertex u ∈ V(Q) is defined as follows:

where outDeg is the out degree of vertex u. The h value
is determined by two factors: (1) the more out degrees a
vertex u has, the more variables may be bound when the star
rooted at u is matched; (2) the smaller ���(p), p ∈ P(u) is, the
higher selectivity of vertex u has. If all properties of vertex
u are variables, h(u) = 0 . Our star-decomposition algorithm
guided by h values is shown in Algorithm 2.

(2)�(u) =
|outDeg|

minp∈P(u) ���(p)

In Algorithm 2, a constant vertex in Qc having the maxi-
mum h value is selected as the root of the first star (lines
3–4). If Qc is an empty set, the algorithm picks up a vertex
in Sub(Q) whose h value is the maximum (lines 4–5). The
star rooted at the selected vertex is generated (line 7) by call-
ing the function genStar (lines 13–17). Then, we use Mv to
denote the candidate set of root nodes which can guarantee
that the star to be generated and the stars that have been gen-
erated share at least one common vertex (line 9). Similarly,
after obtaining the vertex r with respect to the h value, a new
star is generated (lines 10–11). This process (lines 8–11)
terminates until the set Q is empty.

For a subgraph matching query Q, Algorithm 2 can pro-
duce a star decomposition D and determine an order of these
stars, T1 …Tm , such that

⋃
1≤i<j V(Ti) ∩V(Tj) ≠ � , 1 ≤ j ≤ m .

Based on this matching order, we further introduce the con-
cept of the partial query graph.

Definition 6 (Partial query graph) The partial query
graph Pj, 1 ≤ j ≤ m is a subgraph of GQ , where (1)
V(Pj) =

⋃
1≤i≤j V(Ti) a n d (2) E(Pj) =

⋃
1≤i≤j E(Ti) .

Obviously, P1 = T1 and Pm = GQ . Let �(Ti) and �(Pi)
be the set of matching results for star Ti and partial
query graph Pi , respectively. We have �(P1) = �(T1) ,
�(Pt) = �(Pt−1) ⋈ �(Tt) , and �(Pm) = �(Q).

Example 2 Consider the query Q1 over G1 , where h(?y) = 2

3
 ,

h(?x) = 4

2
 , and h(?z) = 1

4
 . According to Algorithm 2, the first

selected vertex is ?x and the corresponding star is T2 (T ′
1
) in

Fig. 2. Then, stars T1 (T ′
2
) and T3 (T ′

3
) are generated. Based

on this order, P1,P2 , and P3 in Fig. 2 are the partial query

Algorithm 2: StarDecompose(Q)
Input : A Query graph Q: {tp1, tp2, ..., tpn}
Output: A Queue of stars D: {T1, ..., Tm}

1 D ← ∅; // D: the queue of stars, V (D): the set of vertices in D
2 Qc ← {s | s ∈ Sub(Q) ∧ s /∈ V ar}; // Sub(Q): the set of subjects in Q
3 if Qc �= ∅ then
4 r ← argmaxv∈Qc h(v)

5 else
6 r ← argmaxv∈Sub(Q) h(v)

7 genStar(r,Q,D); // generate the star rooted at vertex r
8 while Q �= ∅ do
9 Mv ← {s | s ∈ Sub(Q) ∧ s ∈ V (D)} ∪ {s | (s, p, o) ∈ Q ∧ o ∈ V (D)};

10 r ← argmaxv∈Mv h(v);
11 genStar(r,Q,D);

12 return D : {T1, ..., Tm};
13 Function genStar (r,Q,D) // generate a star
14 T.r ← r;
15 T.L ← {(pi, li) | (r, pi, li) ∈ Q};
16 D.enqueue(T);
17 Q ← Q \ {(r, pi, li) | (pi, li) ∈ T.L};

31Efficient Subgraph Matching on Large RDF Graphs Using MapReduce

1 3

graphs of Q1 . Obviously, P3 is exactly the original query
graph GQ1

 . □

4.4 Subgraph Matching Algorithm Using
MapReduce

Next, we show how to use MapReduce to answer a subgraph
matching query in a left-deep-join framework and demon-
strate the pseudocode of our StarMR algorithm.

We can get P1 = T1 and Pm = GQ according to the partial
query graph definition. In addition, the notation �(Ti) repre-
sents the matching results of the star Ti . The notation �(Pi)
represents the matching results of the partial query graph
Pi . The partial query graph Pi can be obtained by joining
the star Ti and partial query graph Pi−1 together. Thus, the
intersection of Pi−1 and Ti will serve as the joining key. To
process the subgraph matching query efficiently, we present
Algorithm 3 to answer the queries, which uses MapReduce.

Algorithm 3 decomposes the query Q into a queue K of
stars (line 1) and matches these stars in MapReduce itera-
tions (lines 3–9). Each round of the MapReduce iteration
joins one star with the partial results until all stars are
matched. Map function consists of two parts: (1) when the
input value is N(v) (lines 12–20), the function matches the
star Tt over every neighbor information N(v) in RDF graph
G in parallel (line 13), then let the matching results of inter-
section of vertex sets of star Tt and partial query graph Pt−1 ,
i.e., �key , be keys (line 22); and (2) when the input value is
a mapping in �(Pt−1) (lines 22–23), similarly, let �key be
keys (line 20). Every mapping � in �v(Tt) and �(Pt−1) is
transformed into a key-value pair (�key,�) . Note that when
t = 1 , the output of map is (�,�) (lines 14–16). reduce func-
tion joins the matching results of Tt and Pt−1 to generate the
matching results of Pt with �key as the keys (lines 24–26).
Figure 3 shows the matching process of StarMR.

Theorem 1 Given an RDF graph G and a query graph GQ ,
we assume that Algorithm 2 decomposes GQ into a queue of

Algorithm 3: StarMR
Input : RDF graph G = (V,E,Σ), A query graph Q: {tp1, tp2, ..., tpn}
Output: The answer set: Ω(Q)

1 K ← StarDecompose(Q); // decompose query graph
2 Ω(Q) ← ∅, t ← 1;
3 while K is not empty do // MapReduce iterations
4 Tt ← K.dequeue();
5 map(∅, N(v));
6 if t > 1 then
7 map(∅, µ) s.t. µ ∈ Ω(Pt−1);
8 reduce(µkey , (Ω1, Ω2) s.t. Ω1 ⊆ Ω(Tt) ∧Ω2 ⊆ Ω(Pt−1));

9 t ← t+ 1;

10 return Ω(Pm);
11 Function map (∅, N(v) or µ)
12 if value is an adjacency list N(v) in G then // match the star Tt

13 Ωv(Tt) ← starMatch(Tt, N(v)) ;
14 if t = 1 then
15 foreach µ ∈ Ωv(T1) do
16 return (∅, µ) ;

17 else
18 foreach µ ∈ Ωv(Tt) do // get the mapping µkey as key
19 µkey ← {(uk, µ(uk)) | uk ∈ V (Pt−1) ∩ V (Tt)};
20 return (µkey , µ);

21 else // value is a mapping
22 µkey ← {(uk, µ(uk)) | uk ∈ V (Pt−1) ∩ V (Tt)} ;
23 return (µkey , µ) ;

24 Function reduce (µkey , (Ω1, Ω2))
25 foreach (µ, µ′) ∈ Ω1 ×Ω2 do
26 return (∅, µ ∪ µ′) ; // µ ∪ µ′ ∈ Ω(Pt)

32 X. Wang et al.

1 3

stars D = {T1,… , Tm} . Algorithm 3 gives the correct query
results, and the number of MapReduce iterations is m.

Proof (Sketch) The algorithm correctness can be proved as
follows: (i) In the first MapReduce iteration of Algorithm 3,
Algorithm 1 is invoked by the map function to match the star
T1 ; then, the matching set �(T1) , i.e., �(P1), can be obtained.
From the second round of the MapReduce iteration on, Algo-
rithm 3 matches a new star Tt in each round according to the
matching orders computed by Algorithm 2. In this way, the
star matching result �(Tt) can be given out. (ii) In the reduce
function, the matching results �(Pt−1) and �(Tt) are joined,
and the joining results �(Pt) can be obtained, where �(Pt−1)
is the matching results of partial query graph Pt−1 , which is
obtained in the last round of the MapReduce iteration. Con-
sequently, the answer set of query Q, i.e., �(Pm), can be
obtained in the m round of the MapReduce iteration. □

Theorem 2 The time complexity of Algorithm 3 is bounded
by O(|V|m ⋅ |Nmax|m⋅|Lmax|) , where |V| is the size of G, |Nmax|

Fig. 3 Matching stars with the
basic algorithm ������

?x

?h ?k

?y

?d?z

in
flu

en
ce
dB

y

infl
ue
nc
ed
By

mainInterest

deathPlace

al
m
aM

at
er

(a) Decomposed Star T2 (T ′
1)

?x ?y ?k

Karl Marx Labour relation Adam Smith
Karl Marx Labour relation Aristotle
Karl Marx Natural Science Adam Smith
Karl Marx Natural Science Aristotle
Weininger Logic Kaut
Weininger Logic Arthur

?h ?d ?z

Aristotle London University of Bonn
Adam Smith London University of Bonn
Aristotle London University of Bonn

Adam Smith London University of Bonn
Arthur Austria University of Vienna
Kaut Austria University of Vienna

(b) Matching T2 (T ′
1) with StarMR

?y

?w ?g

genreof

lit
er
ar
yG
en
re
of

(c) Decomposed Star T1 (T ′
2)

?y ?c ?p

Ecnomic Arndt Economy
Logic Fereydoon Cokked Thinking

(d) Matching T1 (T ′
2) with StarMR

?h ?k

?x ?y

?w?z ?d

?g

in
flu

en
ce
dB

y

in
flu
en
ce
dB
y

mainInterest
literaryGenreof

genreof

al
m
aM

at
er deathPlace

(e) T ′
1 �� T ′

2

?x ?y

Weininger Logic
Weininger Logic

?k ?h

Arthur Kaut
Kaut Arthur

?d ?z

Austria University of Vienna
Austria University of Vienna

?g ?w

Arndt Economy
Fereydoon Cokked Thinking

(f) Reduce T ′
1 �� T ′

2

is the largest out degree in G, and |Lmax| is the largest out
degree in GQ.

Proof (Sketch) In Algorithm 3, each round of the MapRe-
duce iteration matches one star; therefore, it can evaluate the
query Q in m rounds. The time complexity of Algorithm 3
consists of two parts: (1) the time complexity of star match-
ing is

∑
1≤t≤m

∑
v∈V (�N(v)� + ��(Tt)�) ; (2) the time complex-

ity of join operations is
∑

1<t≤m �𝛺(Pt−1)� × �𝛺(Tt)� . In the
worst case, every leaf in Tt can match all neighboring ver-
tices of a vertex v, v ∈ V , i.e., |�v(Tt)| = |N(v)||Tt .L| . Thus,
the time complexity of Algorithm 3 is bounded by O(|V|m ⋅
|Nmax|m⋅|Lmax|) □

5 Two Optimization Strategies

In this section, two optimization strategies are proposed to
improve the efficiency of the StarMR algorithm. The first one
leverages the inherent semantics of the RDF graph to reduce
the overhead expense; the other technique improves the query
performance by postponing the Cartesian product operations.

33Efficient Subgraph Matching on Large RDF Graphs Using MapReduce

1 3

5.1 RDF Property Filtering

We take advantage of the inherent semantics embedded
in RDF graphs to filter out unpromising computations. As
mentioned in Sect. 1, the RDF describes resources by defin-
ing classes and properties. In addition, the RDF Schema
(RDFS)2 is an extended version of RDF, which is regarded
as a framework to define classes of resources. For instance,
the RDF triple (s, ��� ∶ ����,C) declares that resource s is
an instance of the class C, denoted by s ∈ C . We assume that
for each subject s in an RDF graph G, there exists at least a
triple (s, ��� ∶ ����,C) ∈ G . We believe that this assump-
tion is reasonable since every resource should belong to at
least one type in the real world.

Example 3 As shown in F ig . 1 , t he t r ip le
(����������_��_����, ��� ∶ ����, ������������)
denotes that University_of_Bonn is an instance of
the class Organization. Other such triples in Fig. 1 are
omitted. Moreover, all instances of class ������������ are

highlighted in green. Similarly, there exist other classes in
G1 , e.g., Person in blue and Country in red. □

G i ve n a n R D F g r a p h G = (V ,E,�) , l e t
P�(C) = {p ∣ (s, p, o) ∈ G ∧ s ∈ C} be the set of RDF prop-
erties of class C. Note that the size of classes in an RDF
graph is much less than vertices in the corresponding RDF
graph. When matching a star T in the function Map(T, N(v)),
RDF properties of C can be used to filter out input data
as follows: if v ∈ C ∧ P(T .r) ⊈ P�(C) , the procedure
starMatch(T, N(v)) in map function can be pruned.

Example 4 Consider matching star T2 rooted at ?x in Fig. 2 over G1
in Fig. 1, we have P(?x) = {������������, ������������,

����������, ���������} a n d P�(������������) =
{�������} . Due to ����������_��_������ ∈ ����−
�������� ∧ P(?x) ⊈ P�(������������) , the computation
of starMatch(T2 , N(����������_��_������)) can be
pruned. □

5.2 Postponing Cartesian Product Operations

In this section, we first demonstrate the expensive cost
introduced by our basic algorithm and then illustrate an

Fig. 4 Matching stars with
the optimization algorithm
���������

?x

?h ?k

?y

?d?z

in
flu

en
ce
dB

y

infl
ue
nc
ed
By

mainInterest

deathPlace

al
m
aM

at
er

(a) Decomposed Star T2 (T ′
1)

?x ?y

Karl Marx {Labour relation,Natural Science}
Weininger {Logic}

?k ?h

{Adam Smith,Aristotle} {Aristotle,Adam Smith}
{Kaut,Arthur} {Arthur,Kaut}

?d ?z

{London} {University of Bonn}
{Austria} {University of Vienna}

(b) Matching Results to Star T2 (T ′
1)

?y

?w ?g

genreof

lit
er
ar
yG
en
re
of

(c) Decomposed Star T1 (T ′
2)

?y ?c ?p

Ecnomic {Arndt} {Economy}
Logic {Fereydoon} {Cokked Thinking}

(d) Matching Results to Star T1 (T ′
2)

?h ?k

?x ?y

?w?z ?d

?g

in
flu

en
ce
dB

y

in
flu
en
ce
dB
y

mainInterest
literaryGenreof

genreof

al
m
aM

at
er deathPlace

(e) T ′
1 �� T ′

2

?x ?y

Weininger Logic

?k ?h

{Arthur,Kaut} {Kaut,Arthur}
?d ?z

{Austria} {University of Vienna}
?g ?w

Fereydoon Cokked Thinking

(f) Reduce T ′
1 �� T ′

2

2 https ://www.w3.org/TR/rdf-schem a/.

https://www.w3.org/TR/rdf-schema/

34 X. Wang et al.

1 3

efficient solution. Finally, the optimization method will be
analyzed.

In the initial star matching phase of our basic algorithm
StarMR, the function map is invoked to match the star T1 ,
where T1 = (r, L) and L = {(p1, l1),… , (pt, lt)} ; then, we can
obtain the candidate matching set S(li) of every leaf vertex
li . The matching set S(li) is generated according to the label
of li matched with leaf vertices over N(v). Next, we can get
the matching results by doing the Cartesian product opera-
tions on the candidate matching sets of vertices in the star T1 .
Unfortunately, a majority of matching results cannot contrib-
ute to the final results. In other words, the Cartesian product
operation is not necessarily done during the star matching

phase. Even worse, that operation can incur expensive cost
in addition. Since the Cartesian product operation leads to
expensive costs, after executing subgraph matching with our
basic algorithm StarMR, an improvement is proposed to
postpone the Cartesian product operation.

Let f be a mapping from vertices in a star to the candidate
matching sets of the corresponding vertices. We use ��(T)
and ��(P) to denote the matching results of star T and partial
query graph P, respectively. In order to reduce the intermedi-
ate results cost. We develop an efficient optimization algo-
rithm, denoted by StarMRopt . In our optimization method,
the initial star matching phase only needs to calculate the
candidate matching sets of leaves of the star T1.

Algorithm 4: StarMRopt

Input : RDF graph G = (V,E,Σ), A subgraph matching Q: {tp1, tp2, ..., tpn}
Output: The answer set: Ω(Q)

1 K ← StarDecompose(Q); // decompose query graph
2 Ω(Q) ← ∅, t ← 1;
3 while K is not empty do // MapReduce iterations
4 Tt ← K.dequeue();
5 map(∅, N(v));
6 if t > 1 then
7 map(∅, µ) s.t. µ ∈ Ω(Pt−1);
8 reduce(µkey , (Ω1, Ω2) s.t. Ω1 ⊆ Ω(Tt) ∧Ω2 ⊆ Ω(Pt−1));

9 t ← t+ 1;

10 return Ω(Pm);
11 Function starMatchopt(T,N(v)) // Cartesian product can be postponed.
12 if T.r matches vertex v then
13 foreach (pi, li) ∈ T.L do
14 if pi /∈ V ar then
15 S(li) ← {v′ | (pi, v′) ∈ N(v) ∧ li matches v′};
16 else
17 S(li) ← {v′ | (, v′) ∈ N(v) ∧ li matches v′};

18 f ← {(u, S(u)) | u ∈ V (T)};
19 return f ;

20 Function map (∅, N(v) or f ′ s.t. t > 1) // RDF property filtering is applied.
21 if t = 1 then
22 return (∅, starMatchopt(T1, N(v)));

23 else
24 Vkey : {u1, . . . , uk} ← V (Pt−1) ∩ V (Tt);
25 if value is an adjacency list N(v) in G then
26 f ← starMatchopt(Tt, N(v));

// do f(u1)× · · · × f(uk) to get Ωkey

27 Ωkey ← {f1 ∪ · · · ∪ fk | fi = {(ui, {v})} ∧ ui ∈ Vkey ∧ v ∈ f(ui)};
28 foreach fkey ∈ Ωkey do // f ∈ Ωf

29 return (fkey , f − Vkey);

30 else
31 Ωkey ← {f ′

1 ∪ · · · ∪ f ′
k | f ′

i = {(ui, {v})} ∧ ui ∈ Vkey ∧ v ∈ f ′(ui)};
32 foreach fkey ∈ Ωkey do // f ′ ∈ Ωf ′

33 return (fkey , f ′ − Vkey);

34 Function reduce (fkey , (Ωf , Ωf ′))
35 foreach (f, f ′) ∈ Ωf ×Ωf ′ do
36 return (∅, fkey ∪ f ∪ f ′);

35Efficient Subgraph Matching on Large RDF Graphs Using MapReduce

1 3

I n A l g o r i t h m 1 , f o r e a c h s t a r
T = (r, L), L = {(p1, l1),… , (pt, lt)} , we do the Cartesian
product operation {v} × S(l1)… S(lt) to get the matching
results of the star T over N(v), which is �v(T) . However,
unlike Algorithm 1 enumerating the matching results of
each leaf node in detail, the starMatchopt(T ,N(v)) method
adds (u, S(u)) to a mapping f (line 18). Similarly, the func-
tions map and reduce are also changed. In the first itera-
tion, the function map invokes the starMatchopt(T ,N(v))
method and return the mapping f. Meanwhile, in the t-th
MapReduce iteration, first joining the t-th star Tt with the
partial query graph Pt−1 ; then, the common vertices key
sets Vkey ∶ {u1,… , uk} can be obtained. (line 19). The input
of the function map can be classified into two categories.
One is an adjacency list N(v) in G; the other is a mapping
f. The map function does the Cartesian product operation
f (u1) ×⋯ × f (uk) , where uk ∈ V(Pt−1) ∩ V(Tt) (lines 22–33).
The reduce function takes (k, v) pairs as the input, and for
those (k, v) pairs with the same key, the reduce function can
join them together and emerge a new (k, v) pair. For every
f ∈ ��(Pm) , we do the remaining Cartesian product opera-
tion f (u�

1
) ×⋯ × f (u�

k
) to get the final matching results �(Q) ,

where u�
k
∈ V(Q) ⧵

⋃
1<t≤m(Pt−1 ∩ V(Tt)) (lines 19–20).

Although the strategy does not change the complexity of our
algorithm, they can improve query efficiency significantly.
We will take an example to further illustrate the optimiza-
tion algorithm.

Example 5 When answer ing Q1 over G1 , star-
Match(T �

1
,N(����_����)) obtains the candidate set S(li)

of every leaf li in T ′
1
 , e.g., S(?y) = {�������_���− ����} .

We have V(P1) ∩ V(T �
2
) = {?y} . Next, star T ′

2
 is matched, but

the candidate set of ?y in all N(v) in G1 does not contain
vertex Natural_Science. Thus, we do not need to do
the Cartesian product operation S(?z) × S(?y) × S(?w) to get
�����_����(T

�
1
) , whose cost is prohibitively expensive. The

more detailed explanation could refer to Figs. 3 and 4.
 □

6 Experiments

We have carried out extensive experiments on both synthetic
and real-world RDF graphs to verify the efficiency and scal-
ability of StarMR and compared it with the optimization
method StarMRopt , the state-of-the-art S2X, and SHARD.
Our algorithm is orthogonal to the graph partitioning and
placement strategies in the cluster environment. In particu-
lar, for the implementation of StarMR, we use the default
partitioner employed by the Hadoop Distributed File System
(HDFS).

6.1 Settings

The prototype program, which is implemented in Scala using
Spark, is deployed on an 8-site cluster connected by a gigabit
Ethernet. Each site has a Intel(R) Core(TM) i7-7700 CPU
with four cores of 3.60GHz, 16GB memory, and 500GB disk.
We used Hadoop 2.7.4 and Spark 2.2.0. All the experiments
are carried out on Linux (64-bit CentOS) operating systems.

We used three RDF datasets, including synthetic data-
set WatDiv,3 LUBM,4 and real-world dataset DBpedia5 in
our experiments. (1) WatDiv is an RDF benchmark, which
allows users to define their own datasets and generate test
datasets with different sizes; (2)LUBM is also a standard
RDF synthetic benchmark, which is used to generate data-
sets of different scales; (3) DBpedia is a real-world dataset
extracted from Wikipedia. As listed in Table 2, we sum-
marize the statistics of these datasets. For RDF queries, we
group them into four categories according to their shapes,
including linear queries (L), star queries (S), snowflake
queries (F), and complex queries (C), which are listed in
Table 3. Regarding WatDiv, it gives 20 basic query tem-
plates. We leveraged 14 testing queries provided by the
LUBM benchmark. Due to the absence of query templates
on DBpedia, we designed eight queries, covering the four
query categories mentioned above.

6.2 Experiments on WatDiv Datasets

In this section, we verify the efficiency and scalability of our
methods on WatDiv datasets. This section is organized as
the following orders: (1) brief introduction on WatDiv data-
set; (2) validate the efficiency of the optimization algorithm
StarMRopt and analyze the experimental results; (3) examine
the scalability of these methods.

Waterloo SPARQL Diversity Test Suite [2], denoted by
WatDiv, was developed to measure the performance of an
RDF data management system, i.e., the RDF data scale and
the SPARQL queries spectrum can be defined by the user
themselves. More specifically, WatDiv is composed of a data
generator and a query generator. We can generate our own
datasets through a designated dataset description language
using the data generator. Our experiments were carried out
on WatDiv1M, WatDiv10M, and WatDiv100M datasets,
where “1M” indicates the number of triples is one million.

3 http://dsg.uwate rloo.ca/watdi v/.
4 http://swat.cse.lehig h.edu/proje cts/lubm/.
5 http://wiki.dbped ia.org/downl oads-2016-10.

http://dsg.uwaterloo.ca/watdiv/
http://swat.cse.lehigh.edu/projects/lubm/
http://wiki.dbpedia.org/downloads-2016-10

36 X. Wang et al.

1 3

6.2.1 Efficiency on WatDiv

Experiments were conducted on WatDiv100M to verify the
query efficiency of our method. As shown in Fig. 5, our
optimization method StarMRopt has the best query efficiency
on all 20 queries. The basic method StarMR is also much
better than S2X and SHARD. The query execution times
of these 20 queries are given in Table 4. For the query F3
(resp. C2), it can be observed that S2X cannot finish in the
time limit (1 × 104s), denoted by INF, while StarMRopt and
StarMR can return the answers within 20s (resp. 28s) and
65s (resp. 94s), respectively. The average execution speed

of the remaining 18 queries in StarMRopt is about 11 times
faster than of that in S2X. Furthermore, the average query
execution time of StarMRopt covering all the query catego-
ries is about 17 seconds, which is up to 47 times and on
average 26 times faster than SHARD, i.e., our optimization
method on average, outperforms S2X and SHARD by an
order of magnitude over WatDiv100M.

In addition, compared with StarMR, the time of
StarMRopt is reduced from 44.86% to 74.94%, as listed in
Table 4. Thus, StarMRopt is able to evaluate the query more
efficiently. We can observe that StarMRopt tends to be stable
over all the queries. In contrast, S2X and SHARD fluctuate
dramatically.

The experimental result demonstrates that the effect of
optimization strategies in StarMRopt is significant. We ana-
lyze that the reasons include: (1) S2X and SHARD joined
the intermediate matching results of all triple patterns in
subgraph and did not leverage any structure and semantic
information, leading to expensive cost; (2) StarMR did Car-
tesian product operations in the star matching phase, which
may lead to expensive cost; and (3) in StarMRopt , a part of
invalid input data were pruned by utilizing RDF properties
embedded in RDF graphs, and a large number of Cartesian
operations were postponed and reduced.

6.2.2 Scalability on WatDiv

We compared StarMRopt with StarMR, S2X, and SHARD.
The scalability comparison experiments were carried out on
various scale WatDiv datasets and different experimental
cluster sites.

Different Size of Datasets For the reason that S2X cannot
finish in the time limit (1 × 104 s) on query F3 and C2 , we
conducted experiments on WatDiv datasets over the other
18 queries except them. Moreover, the average times of

Table 2 Datasets

Datasets |V| |E|

LUBM4 78,595 493,844
LUBM40 864,238 5,495,742
LUBM400 8,675,133 55,256,074
WatDiv1M 158,118 1,109,678
WatDiv10M 1,052,571 10,916,457
WatDiv100M 10,250,947 108,997,714
DBpedia 6,060,648 23,509,250

Table 3 Queries

Query L S F C

LUBM Q1,Q3,Q5,
Q6,Q10,Q11,
Q13,Q14

Q4 Q7,Q8,
Q12

Q2,Q9

WatDiv L1,L2,L3,
L4,L5

S1, S2, S3,
S4, S5, S6,
S7

F1,F2,F3,
F4,F5

C1,C2,
C3

DBpedia L1,L2 S1, S2 F1,F2 C1,C2

Fig. 5 The results on different
queries over WatDiv100M

100

101

102

103

INF

L1 L2 L3 L4 L5 S1 S2 S3 S4 S5 S6 S7 F1 F2 F3 F4 F5 C1 C2 C3

Q
ue

ry
 T

im
e

(s
)

WatDiv100M

StarMRopt
StarMR
S2X
SHARD

37Efficient Subgraph Matching on Large RDF Graphs Using MapReduce

1 3

Table 4 The query times (in s) of StarMRopt , StarMR, S2X, and SHARD on WatDiv100M

Query S1 S2 S3 S4 S5

StarMRopt 17.773 14.973 14.606 15.331 14.698
StarMR 54.741 43.882 43.884 53.696 45.313
S2X 134.380 108.325 100.568 147.862 104.754
SHARD 794.303 376.891 361.489 365.994 346.176

Query S6 S7 C1 C2 C3

StarMRopt 14.096 16.565 19.667 27.144 24.712
StarMR 44.165 53.858 66.647 93.888 44.820
S2X 137.311 147.112 747.289 INF 244.216
SHARD 272.885 266.494 692.901 890.009 664.440

Query L1 L2 L3 L4 L5

StarMRopt 15.987 15.403 14.998 14.497 14.240
StarMR 54.636 54.379 44.281 44.476 56.826
S2X 206.564 347.468 100.222 101.839 375.845
SHARD 278.2577 277.2127 209.261 187.220 268.5197

Query F1 F2 F3 F4 F5

StarMRopt 16.092 16.081 19.954 22.118 19.987
StarMR 52.733 55.855 64.719 75.001 64.818
S2X 137.796 157.659 INF 180.965 248.616
SHARD 531.6827 698.4937 517.9577 785.1687 522.8997

Fig. 6 Scalability on WatDiv
datasets

 0

 52

 104

 156

 208

 260

1M 10M 100M

Q
ue

ry
 T

im
e

(s
)

(a) Linear

StarMRopt
StarMR
S2X
SHARD

 0

 84

 168

 252

 336

 420

1M 10M 100M

Q
ue

ry
 T

im
e

(s
)

(b) Star

StarMRopt
StarMR
S2X
SHARD

 0

 130

 260

 390

 520

 650

1M 10M 100M

Q
ue

ry
 T

im
e

(s
)

(c) Snowflake

StarMRopt
StarMR
S2X
SHARD

 0

 164

 328

 492

 656

 820

1M 10M 100M

Q
ue

ry
 T

im
e

(s
)

(d) Complex

StarMRopt
StarMR
S2X
SHARD

38 X. Wang et al.

1 3

each query category were calculated, as shown in Fig. 6.
When changing the size of datasets from WatDiv1M to Wat-
Div100M, query times of all four methods increased and
StarMRopt was always the best one. We can observe that
with the scale of the datasets increasing, the query times of
S2X and SHARD increased dramatically. More specifically,
the average growth rate of S2X and SHARD were 95.8%
and 72.7%, respectively. In contrast, for the two methods
StarMRopt and StarMR, the query time growth rate changed
slightly. We analyzed the low performance of S2X and

SHARD was that the expensive cost incurred by abundant
intermediate results.

Compared with StarMRopt , the growth rate of query
times in StarMR was higher than that of StarMRopt . As
shown in Fig. 6, the performance of SHARD and S2X
dropped significantly with the size of datasets increasing,
especially SHARD.

Different Numbers of Cluster Sites Extensive experiments
were carried out on the WatDiv100M dataset with the num-
ber of cluster sites varying from 4 to 8. During these experi-
ments, we randomly selected one query from each of the four

Fig. 7 Scalability on cluster
sites

 0

 140

 280

 420

 560

 700

4 5 6 7 8
Q

ue
ry

 T
im

e
(s

)
(a) Query L4 over WatDiv100M

StarMRopt
StarMR
S2X
SHARD

100

101

102

103

104

105

4 5 6 7 8

Q
ue

ry
 T

im
e

(s
)

(b) Query S4 over WatDiv100M

StarMRopt
StarMR
S2X
SHARD

100

101

102

103

104

105

4 5 6 7 8

Q
ue

ry
 T

im
e

(s
)

(c) Query F2 over WatDiv100M

StarMRopt
StarMR
S2X
SHARD

100

101

102

103

104

105

4 5 6 7 8

Q
ue

ry
 T

im
e

(s
)

(d) Query C3 over WatDiv100M

StarMRopt
StarMR
S2X
SHARD

Fig. 8 Efficiency on LUBM40

10-1

100

101

102

103

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14

Q
ue

ry
 T

im
e(

s)

LUBM40

StarMROpt
StarMR
S2X
SHARD

39Efficient Subgraph Matching on Large RDF Graphs Using MapReduce

1 3

query categories, i.e., L4, S4,F2 , and C3 . As shown in Fig. 7,
the experimental results verified our intuition that query
times of all these four methods decreased as the number of
cluster sites increased. This is because when the number
of sites increased, the degree of parallelism also increased.
Although with the number of sites increasing, the speedup
ratios of S2X and StarMRopt are comparative; the perfor-
mance of StarMRopt is stable for selective queries and the
query times of StarMRopt are far less than that of S2X. For
SHARD, we can observe that the query times of category F
and S are around 1000 s, and in all the query categories, the
query time of SHARD dropped dramatically from site 4 to
site 5. It demonstrated that the performance of SHARD was
extremely dependent on the experimental environment.

6.3 Experiments on LUBM

The Lehigh University Benchmark [10], denoted by LUBM,
is a synthetic dataset, which aims at evaluating the perfor-
mance and capability of various knowledge base systems.
To verify the stability of StarMRopt , extensive experiments
were conducted not only on the WatDiv datasets but also on
the standard benchmark LUBM. In this paper, we use the
LUBM datasets scaling from LUBM4 to LUBM400. The

following experiments focus on two aspects: the efficiency
and scalability of these methods.

6.3.1 Efficiency on LUBM

The efficiency validating experiments were conducted on the
LUBM40 dataset. Figure 8 compared our proposed methods
StarMRopt and StarMR with the other two methods.

We can observe that StarMRopt outperformed StarMR,
S2X, and SHARD for all query categories. The performance
of S2X was better than SHARD for most queries, for which
we analyzed the reason was that SHARD cannot process
several triple patterns in a single MapReduce job. However,
when answering the query Q2 (resp. Q9), S2X terminated
with errors. It was because that the query process produced
too many intermediate results, thus incurring expensive over-
head for S2X. While StarMRopt and StarMR can return the
answers within 10.6s (resp. 19.5s) and 12.5s (resp. 13.2s),
respectively. The average runtimes of the remaining 12 que-
ries in StarMRopt were about 5 times faster than of that in
S2X, and about 11 times faster than of that in SHARD.

In addition, the average query runtime of StarMRopt cov-
ering all the query categories was about 7 seconds, which
was up to 29 times and in average 12 times faster than

Fig. 9 Scalability on LUBM
datasets

100

101

102

103

104

4 40 400

Q
ue

ry
 T

im
e

(s
)

Q10 (LUBM)

StarMROpt
StarMR
S2X
SHARD

100

101

102

103

104

4 40 400

Q
ue

ry
 T

im
e

(s
)

Q4 (LUBM)

StarMROpt
StarMR
S2X
SHARD

100

101

102

103

104

4 40 400

Q
ue

ry
 T

im
e

(s
)

Q7 (LUBM)

StarMROpt
StarMR
S2X
SHARD

100

101

102

103

104

4 40 400
Q

ue
ry

 T
im

e
(s

)

Q9 (LUBM)

StarMROpt
StarMR
S2X
SHARD

40 X. Wang et al.

1 3

SHARD. Overall, the experimental results clearly demon-
strated the superior performance and stability of our optimi-
zation method StarMRopt , which was an order of magnitude
faster than other methods for all queries.

6.3.2 Scalability on LUBM

Similar to the previous scalability-examining experiments on
the WatDiv datasets, we carried out extensive experiments
on various size of LUBM datasets, i.e., LUBM4, LUBM40,
and LUBM400. In addition, we verified the scalability of our
methods by changing the number of sites. Furthermore, we
selected four queries, Q4 , Q7 , Q9 , Q10 , which are covering all
the query categories. The intuitive experimental results are
shown in Figs. 9 and 10.

Different Size of Datasets We evaluated the scalability
of the StarMRopt by changing the scale of LUBM data-
sets. As shown in Fig. 9, the experimental results showed
that the method we proposed significantly outperforms
S2X and SHARD. We can observe that the query perfor-
mance of all the queries decreased with the scale of datasets
increasing. When S2X answers query Q9 over LUBM40 and
LUBM400, some errors occurred, which revealed that S2X
cannot complete the query and often aborted. In contrast, the
runtimes of our methods were significantly less than S2X
and SHARD covering all queries. The average runtime of
StarMRopt covering all the query categories was about 18
seconds, which was up to 23 times faster than that of S2X,

and 13 times faster than that of SHARD. We analyze the
reason can be that our optimization method exploited the
structure features, semantic information, and heuristic algo-
rithms, which can reduce the expensive overhead incurred
by the intermediate results.

Different Numbers of Cluster Sites The scalability of
each method was evaluated on LUBM400 dataset with the
number of cluster sites varying from 4 to 8, as shown in
Fig. 10. It was intuitive that for most queries, the runtimes
decreased with the cluster sites increasing. We analyzed that

Fig. 10 Scalability on cluster
cites

 0

 70

 140

 210

 280

4 5 6 7 8

Q
ue

ry
 T

im
e

(s
)

(a) Query Q10 over LUBM400M

StarMROpt
StarMR
S2X
SHARD

 0

 160

 320

 480

 640

4 5 6 7 8

Q
ue

ry
 T

im
e

(s
)

(b) Query Q4 over LUBM400M

StarMROpt
StarMR
S2X
SHARD

 0

 170

 340

 510

 680

4 5 6 7 8

Q
ue

ry
 T

im
e

(s
)

(c) Query Q7 over LUBM400M

StarMROpt
StarMR
S2X
SHARD

 0

 200

 400

 600

 800

4 5 6 7 8

Q
ue

ry
 T

im
e

(s
)

(d) Query Q9 over LUBM400M

StarMROpt
StarMR
SHARD

100

101

102

103

104

L1 L2 S1 S2 F1 F2 C1 C2

Q
ue

ry
 T

im
e

(s
)

DBpedia

StarMRopt
StarMR
S2X
SHARD

Fig. 11 Efficiency on DBpedia

41Efficient Subgraph Matching on Large RDF Graphs Using MapReduce

1 3

more cluster sites generate more degree of parallelism so
that there were more threads to execute query tasks. How-
ever, the runtimes of S2X and SHARD decreased from 4
to 7, but increased from 7 to 8 instead. After an in-depth
analysis, we concluded that when the parallelism number
increased to a certain extent, the expensive communication
cost became the bottleneck.

In addition, S2X cannot complete queries Q9 on all the
number of cluster sites, the result validated the conclusion
that the performance of S2X cannot beat our methods. To
summarize, our proposed methods achieved better perfor-
mance than S2X and SHARD.

6.4 Experiments on the Real‑World Dataset

To evaluate the efficiency and scalability of StarMRopt on a
real-world dataset DBpedia, extensive experiments were car-
ried out. Our experimental results are shown in Figs. 11 and
12. More specifically, we compared our proposed methods
with the close competitors, i.e., S2X and SHARD. On the
one hand, we used the average runtimes to verify the effi-
ciency; on the other hand, we changed the number of cluster
sites to examine the scalability of these methods.

6.4.1 Efficiency on DBpedia

Extensive experiments were carried out to verify the query
efficiency of our method on the real-world datasets DBpedia.
Figure 11 compared the different algorithms over DBpedia
covering all query categories.

We can observe that SHARD showed a good performance
for all the query types over DBpedia dataset, for the rea-
son that the query time of it tended to be more stable than
S2X. But SHARD was not able to beat our methods for any
query. As shown in Fig. 11, StarMRopt also demonstrated
the best query efficiency on all queries over DBpedia, and
StarMR performed much better than the other two methods,
i.e., S2X and SHARD. When answering C2 , i.e., the query
Q1 mentioned in Sect. 1, S2X terminated with errors. Thus,
S2X cannot efficiently evaluate the complex query involving
a large number of intermediate results. For the remaining
seven queries, the execution speeds in StarMRopt was about
4 to 469 times faster than that in S2X, and about 7 to 20
times faster than that in SHARD. Compared with StarMR,
the time of StarMRopt was reduced from 44.19% to 67.48%,
i.e., the optimization effect on DBpedia was prominent. So in
summary, the experimental results in Fig. 11 demonstrated
that StarMRopt reduced invalid input data and postponed
Cartesian product operations by a large margin.

Fig. 12 Scalability on DBpedia

 0

 60

 120

 180

 240

 300

 360

4 5 6 7 8
Q

ue
ry

 T
im

e
(s

)

(a) Query L1 over DBpedia

StarMRopt
StarMR
S2X
SHARD

 0

 60

 120

 180

 240

 300

 360

4 5 6 7 8

Q
ue

ry
 T

im
e

(s
)

(b) Query S1 over DBpedia

StarMRopt
StarMR
S2X
SHARD

 0

 100

 200

 300

 400

 500

 600

4 5 6 7 8

Q
ue

ry
 T

im
e

(s
)

(c) Query F1 over DBpedia

StarMRopt
StarMR
S2X
SHARD

 0

 80

 160

 240

 320

 400

 480

4 5 6 7 8

Q
ue

ry
 T

im
e

(s
)

(d) Query C1 over DBpedia

StarMRopt
StarMR
S2X
SHARD

42 X. Wang et al.

1 3

From the experimental results, we can observe that the
number of matching subgraphs does have an effect on the
matching efficiency. If the selectivity is low, then the num-
ber of matching subgraphs is high; the execution time was
long, such as the complex query F2 ; for the high selectivity,
the number of matching subgraphs is low, and it takes less
execution time for the query, such as the query L2.

6.4.2 Scalability on DBpedia

We conducted experiments on DBpedia to compare the scal-
ability of these methods, with the number of cluster sites
varying from 4 to 8; the experimental result is shown in
Fig. 12.

The scalability experiments were conducted on four que-
ries, i.e., L1, S1,F1 , and C1 over DBpedia. Similarly, query
times of these four methods decreased with the number of
cluster sites varying from 4 to 8, as shown in Fig. 12. Fur-
thermore, the optimization method StarMRopt was an order
of magnitude faster than SHARD on average for all four
query categories, even with repeated query execution. An
interesting observation was that the queries L1 and C1 of
S2X did not decrease with the number of site increasing,
which counters our intuition. According to our analysis, the
reason can be that when the degree of parallelism increased
to a certain extent, the cost of communication increased and
gradually became the main factor. In addition, the speedup
ratio of StarMR was about 1.1 times of S2X.

7 Conclusion

In this paper, we proposed the StarMR star-decomposition-
based query processor for efficiently answering subgraph
matching queries on big RDF graph data using MapReduce.
Moreover, we also developed two optimization strategies,
including RDF property filtering and postponing Cartesian
product operations, to improve the basic StarMR algo-
rithm. Our extensive experimental results on both syn-
thetic and real-world datasets have verified the efficiency
and scalability of our method, which outperforms S2X and
SHARD by one order of magnitude. In the future, we will
investigate how our approach can be adapted to the top-k
SPARQL BGP queries. Meanwhile, we will investigate how
the multi-SPARQL query settings can be improved by using
our approach.

Acknowledgements The preliminary version of this article has been
published in APWeb-WAIM 2018.

Author Contributions XW, JL, JW, and YC proposed the key idea and
provided the professional guidance of this research work. QX and LC
conducted the experiments and were the major contributors in writing
the manuscript. All authors read and approved the final manuscript.

Funding This work is supported by the National Natural Science Foun-
dation of China (61572353, 61402323, and 61472427), the Natural
Science Foundation of Tianjin (17JCYBJC15400), and the Natural
Science Foundation of Beijing (4172031).

Compliance with Ethical Standards

Conflict of interest The authors declare that they have no competing
interests.

Availability of Data and Materials The datasets generated and ana-
lyzed during the current study are available in the WatDiv, LUBM, and
DBpedia repository, WatDiv (http://dsg.uwate rloo.ca/watdi v/), LUBM
(http://swat.cse.lehig h.edu/proje cts/lubm/), and DBpedia (http://wiki.
dbped ia.org/downl oads-2016-10).

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

 1. Abadi DJ, Marcus A, Madden SR, Hollenbach K (2007) Scalable
semantic web data management using vertical partitioning. In:
Proceedings of the 33rd international conference on Very large
data bases. VLDB Endowment, pp 411–422

 2. Aluç G, Hartig O, Özsu MT, Daudjee K (2014) Diversified stress
testing of RDF data management systems. In: International
Semantic Web Conference. Springer, pp 197–212

 3. Berners-Lee T, Hendler J, Lassila O (2001) The semantic web.
Sci Am 284(5):34–43

 4. Bizer C, Heath T, Berners-Lee T (2011) Linked data: The story so
far. In: Semantic services, interoperability and web applications:
emerging concepts. IGI Global, pp 205–227

 5. Harris S, Seaborne A (2013) SPARQL 1.1 query language. W3C
recommendation, W3C

 6. Dean J, Ghemawat S (2008) Mapreduce: simplified data process-
ing on large clusters. Commun ACM 51(1):107–113

 7. Dyer M, Greenhill C (2000) The complexity of counting graph
homomorphisms. Random Struct Algorithms 17(3–4):260–289

 8. Erling O, Mikhailov I (2010) Virtuoso: Rdf support in a native
rdbms. In: de Virgilio R, Giunchiglia F, Tanca L (eds) Semantic
web information management. Springer, Berlin, Heidelberg, pp
501–519

 9. Gonzalez JE, Xin RS, Dave A, Crankshaw D, Franklin MJ, Sto-
ica I (2014) Graphx: Graph processing in a distributed dataflow
framework. In: 11th USENIX symposium on operating systems
design and implementation (OSDI 14), pp 599–613

 10. Guo Y, Pan Z, Heflin J (2005) Lubm: A benchmark for owl knowl-
edge base systems. Web Semant Sci Serv Agents World Wide
Web 3(2–3):158–182

 11. Gurajada S, Seufert S, Miliaraki I, Theobald M (2014) Triad: a
distributed shared-nothing rdf engine based on asynchronous mes-
sage passing. In: Proceedings of the 2014 ACM SIGMOD inter-
national conference on Management of data. ACM, pp 289–300

 12. Hammoud M, Rabbou DA, Nouri R, Beheshti SMR, Sakr S (2015)
Dream: distributed rdf engine with adaptive query planner and
minimal communication. Proc VLDB Endow 8(6):654–665

http://dsg.uwaterloo.ca/watdiv/
http://swat.cse.lehigh.edu/projects/lubm/
http://wiki.dbpedia.org/downloads-2016-10
http://wiki.dbpedia.org/downloads-2016-10
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

43Efficient Subgraph Matching on Large RDF Graphs Using MapReduce

1 3

 13. Harth A, Umbrich J, Hogan A, Decker S (2007) Yars2: A feder-
ated repository for querying graph structured data from the web.
In: Aberer K, Choi K-S, Noy N, Allemang D, Lee K-Il, Nixon L,
Golbeck J, Mika P, Maynard D, Mizoguchi R, Schreiber G, Cudré-
Mauroux P (eds) The semantic web. Springer, Berlin, Heidelberg,
pp 211–224

 14. Husain M, McGlothlin J, Masud MM, Khan L, Thuraisingham
BM (2011) Heuristics-based query processing for large rdf
graphs using cloud computing. IEEE Trans Knowl Data Eng
23(9):1312–1327

 15. Lai L, Qin L, Lin X, Chang L (2015) Scalable subgraph enumera-
tion in mapreduce. Proc VLDB Endow 8(10):974–985

 16. Cyganiak R, Wood D, Lanthaler M (2014) RDF 1.1 concepts and
abstract syntax. W3C recommendation, W3C

 17. Peng P, Zou L, Özsu MT, Chen L, Zhao D (2016) Processing
sparql queries over distributed rdf graphs. VLDB J 25(2):243–268

 18. Pérez J, Arenas M, Gutierrez C (2006) Semantics and complexity
of sparql. In: Cruz I, Decker S, Allemang D, Preist C, Schwabe D,
Mika P, Uschold M, Aroyo LM (eds) International semantic web
conference. Springer, Berlin, Heidelberg, pp 30–43

 19. Rohloff K, Schantz RE (2010) High-performance, massively
scalable distributed systems using the mapreduce software frame-
work: the shard triple-store. In: Programming support innovations
for emerging distributed applications. ACM, p 4

 20. Schätzle A, Przyjaciel-Zablocki M, Berberich T, Lausen G (2015)
S2x: Graph-parallel querying of rdf with graphx. In: Wang F, Luo
G, Weng C, Khan A, Mitra P, Yu C (eds) VLDB workshop on big
graphs online querying. Springer, pp 155–168

 21. Schätzle A, Przyjaciel-Zablocki M, Neu A, Lausen G (2014) Sem-
pala: interactive sparql query processing on hadoop. In: Interna-
tional semantic web conference. Springer, pp 164–179

 22. Schätzle A, Przyjaciel-Zablocki M, Skilevic S, Lausen G (2016)
S2rdf: Rdf querying with sparql on spark. Proc VLDB Endow
9(10):804–815

 23. Shvachko K, Kuang H, Radia S, Chansler R (2010) The hadoop
distributed file system. In: 2010 IEEE 26th symposium on mass
storage systems and technologies (MSST). pp 1–10. https ://doi.
org/10.1109/MSST.2010.54969 72

 24. Sun Z, Wang H, Wang H, Shao B, Li J (2012) Efficient sub-
graph matching on billion node graphs. Proc VLDB Endow
5(9):788–799

 25. Valduriez P (1987) Join indices. ACM Trans Database Syst
(TODS) 12(2):218–246

 26. Yang S, Han F, Wu Y, Yan X (2016) Fast top-k search in knowl-
edge graphs. In: 2016 IEEE 32nd international conference on data
engineering (ICDE), pp 990–1001

 27. Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I
(2010) Spark: Cluster computing with working sets. HotCloud
10(10–10):95

 28. Zeng K, Yang J, Wang H, Shao B, Wang Z (2013) A distributed
graph engine for web scale rdf data. In: Proceedings of the VLDB
endowment, vol 6. VLDB Endowment, pp 265–276

 29. Zhang X, Chen L (2017) Distance-aware selective online query
processing over large distributed graphs. Data Sci Eng 2(1):2–21

 30. Zou L, Özsu MT, Chen L, Shen X, Huang R, Zhao D
(2014) gstore: A graph-based sparql query engine. VLDB J
23(4):565–590

https://doi.org/10.1109/MSST.2010.5496972
https://doi.org/10.1109/MSST.2010.5496972

	Efficient Subgraph Matching on Large RDF Graphs Using MapReduce
	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 The StarMR Algorithm
	4.1 Storage Schema
	4.2 Star Matching
	4.3 Star Decomposition of Query Graphs
	4.4 Subgraph Matching Algorithm Using MapReduce

	5 Two Optimization Strategies
	5.1 RDF Property Filtering
	5.2 Postponing Cartesian Product Operations

	6 Experiments
	6.1 Settings
	6.2 Experiments on WatDiv Datasets
	6.2.1 Efficiency on WatDiv
	6.2.2 Scalability on WatDiv

	6.3 Experiments on LUBM
	6.3.1 Efficiency on LUBM
	6.3.2 Scalability on LUBM

	6.4 Experiments on the Real-World Dataset
	6.4.1 Efficiency on DBpedia
	6.4.2 Scalability on DBpedia

	7 Conclusion
	Acknowledgements
	References

