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Abstract. Knowledge reasoning aims to infer new triples based on exist-
ing triples, which is essential for the development of large knowledge
graphs, especially for knowledge graph completion. With the develop-
ment of neural networks, Graph Convolutional Networks (GCNs) in
knowledge reasoning have been paid widespread attention in recent years.
However, the GCN model only considers the structural information of
knowledge graphs and ignores the ontology semantic information. In this
paper, we propose a novel model named IterG, which is able to incor-
porate ontology semantics seamlessly into the GCN model. More specif-
ically, IterG learns the embeddings of knowledge graphs in an unsuper-
vised manner via GCNs and extracts the semantic ontology information
via rule learning. The model is capable of propagating relation layer-
wisely as well as combining both rich structural information in knowledge
graphs and ontological semantics. The experimental results on five real-
world datasets demonstrate that our method outperforms the state-of-
the-art approaches, and IterG can effectively and efficiently fuse ontology
semantics into GCNs.

Keywords: Graph convolutional neural networks - Knowledge
reasoning + Knowledge graphs

1 Introduction

With the rapid development of artificial intelligence, Knowledge Graphs (KGs)
have become a large-scale semantic network on top of the existing World Wide
Web. KGs store facts as triples in the form of (head entity, relation, tail entity),
abbreviated as (h,r,t). Entities and relations in the real world can be formally
described in the form of a KG, where nodes represent entities and edges represent
relations. With the development of big data and semantic web technology, a
large number of KGs, such as YAGO [15,16], WordNet [9], and Freebase [1],
have been developed, which have also supported a wide range of applications,
including question answering [22], relation extraction [25], and recommendation
systems [5].
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With the emergence of KGs, knowledge reasoning has become a basic ser-
vice to support upper-level applications and attracted widespread attention.
KG-oriented knowledge reasoning is intended to use various learning methods
to infer the existing relations between entity pairs, and automatically identify
wrong knowledge based on existing data to supplement KGs. For example, if
a KG contains facts such as (HUAW EI, isBasedIn, Shenzhen), (Shenzhen,
state LocatedIn, Guangdong), and (Guangdong, countryLocatedIn, China), we
can find the missing link (HU AW EI, headquarter LocatedIn, China). The tar-
get of knowledge reasoning is not only the attributes and relations between
entities, but also the attribute values of entities and the conceptual level of
ontologies. For instance, if an entity’s ID number is known, the gender, age, and
other attributes of this entity can be obtained through inference. Therefore, it
is very important to efficiently and accurately realize the knowledge reasoning
task on KGS.

To address these knowledge reasoning tasks, one of the solutions is to directly
model the triples of KGs through a neural network, and obtain the embeddings
of the elements of triples for further reasoning based on a score function. Each
entire network forms a scoring function, and the output of the neural network
is the scoring value. Socher et al. [14] proposed a neural tensor network named
NTN, which replaced the traditional neural network layer with a bilinear tensor
layer, and linked the head entity and the tail entity in different dimensions to
characterize the entity complex semantic relations between them. Chen et al.
[3] introduced a similar neural tensor network model to predict new relations
in KGs. By initializing the entity representations learned from text using an
unsupervised method, the model can be improved. Recently, Shi and Weninger
[13] proposed a shared variable neural network model named ProjE. The main
method of ProjE is to treat the entity prediction expectation as a multi-candidate
ranking problem, and take the candidate with the highest ranking as the entity
prediction result.

With the development of neural networks, GCNs in knowledge reasoning has
been paid widespread attention in recent years, and it can perform convolution
on arbitrary structural graphs [4,8]. However, GCNs are suitable for processing
undirected graphs, and the relations in KGs are directed. Therefore, in order
to apply GCNs to knowledge reasoning, Schlichtkrull et al. [12] proposed the
Relation Graph Convolutional Networks (R-GCNs) model to solve the problem
of knowledge reasoning from a structural perspective. The R-GCN model intro-
duces GCNs into knowledge reasoning for the first time from a graph perspective,
and has achieved outstanding results on some datasets on link prediction and
entity classification. However, in this method, the evolutionary design based on
GCNs is not well described, and for datasets with fewer types of relations, the
quality of the processing results will be reduced. Therefore, the R-GCN model
is not mature enough compared with other inference models, and there is still
abundant room for improvement.

To this end, we propose a novel model named Iteratively learning Graph con-
volutional network with ontology semantics (IterG) for knowledge reasoning,
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which learns the embeddings of KGs in an unsupervised manner via GCNs.
In particular, the semantic ontology information in KGs is extracted via rule
learning. The model is capable of propagating relations layer-wisely as well as
combining both rich structural information in KGs and the semantic ontology
information. We evaluate our proposed methods with the link prediction task
and verify the running performance on public benchmark datasets, i.e., WN18
and FB15K. Experimental results show that our approach achieves better per-
formance compared with the state-of-the-art approaches.
The major contributions of our work are three-fold:

1. We propose an iteratively learning graph convolutional network model IterG,
which is regarded as a framework to complement the KGs. It can effectively
accomplish the knowledge reasoning problem on KGs.

2. To enhance the reasoning ability of the model, we extract the semantic ontol-
ogy information in KGs via rule learning and integrating semantics into IterG.
The model is capable of propagating relations layer-wisely as well as combin-
ing both rich structural information in KGs with ontological semantics.

3. The experimental results on five benchmarks demonstrate that our proposed
IterG outperforms the current state-of-the-art methods, including both tra-
ditional and deep learning based methods. And IterG can effectively and
efficiently fuse ontology semantics into GCNs.

The rest of this paper is organized as follows. Section 2 reviews related work.
In Sect. 3, the preliminaries of GCNs are introduced. In Sect. 4, we provide the
details of the proposed algorithm for learning the embeddings of the entities and
relations in KGs. Section 5 shows the experimental results, and we conclude in
Sect. 6.

2 Related Work

In this paper, we focus on iteratively learning graph convolutional network and
integrating ontology semantics from KGs. Thus the related work includes two
parts: knowledge reasoning based on GCNs and rule learning.

2.1 R-GCN Models

The entities in KGs are connected to each other with relations. Each entity
and its neighboring entities form a star structure. In a star structure, there is a
relation from a central entity to an adjacent entity, and vice versa. In order to be
able to learn KGs from the perspective of neighboring entities and apply them to
KG completion, Schlichtkrull et al. [12] introduced R-GCNs from the perspective
of graphs, which modeled the KGs via encoding the star structure from the
micro level. Unlike knowledge reasoning from the perspective of text processing,
R-GCN considers the problem of knowledge reasoning from the perspective of
structure, which evolved from GCNs. Since GCNs only deal with undirected
graphs and KGs are mostly directed graphs, R-GCNs are designed to be adapted
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to directed relations. The R-GCN model can be viewed as a set of autoencoders,
including an encoder and a decoder.

However, the experimental results of the R-GCN model are not stable enough:
the improvements obtained on the AIFB and AM standard datasets are signifi-
cant, whereas the experimental results on the MUTAG and BGS datasets are not
good, which is caused by the nature of the datasets. MUTAG, a molecular map
data set, is relatively simple from the perspective of both representing atomic
bonds and the existence of a certain characteristic. BGS is a rock type data set
with hierarchical feature descriptions released by the British Geological Survey,
where the relations only indicate the existence of a specific feature or feature
hierarchy. To address this issue, an improvement is to introduce the attention
mechanism and replace the normalization constants with attention weights [12].

The R-GCN model introduced GCNs to knowledge reasoning for the first
time from the perspective of graphs. It has achieved good results on some
datasets on link prediction and entity classification. However, in this method, the
evolutionary design based on GCNs is not well described, and for datasets with
fewer types of relations, the quality of the processing results will be reduced. In
addition, the experimental results of R-GCNs lacks comparison with the latest
baselines, and the reliability remains to be verified.

2.2 Rule Learning

The rule-based reasoning methods are well-studied in traditional knowledge engi-
neering for decades, which use logical rules for reasoning on KGs. The reasoning
component inside the NELL KG uses first-order relational learning algorithms
for reasoning [2]. The reasoning component learns the probabilistic rules, and
after manual screening and filtering, it brings in specific entities to instantiate
the rules and infer new relationship instances from other relationship instances
that have been learned. The YAGO KG uses an inference machine named Spass-
YAGO to enrich KG content [17]. Spass-YAGO abstracts the triples in YAGO to
equivalent rule classes and uses chain superposition to calculate the transitivity
of the relationship. The superposition process can be iterated arbitrarily, and
the expansion of YAGO is completed by using these rules. Wang et al. [20,21]
proposed a first-order probabilistic language model ProPPR (programming with
personalized PageRank) for knowledge reasoning on KGs. Paulheim and Bizer
[11] proposed two algorithms, SDType and SDValidate which use the statisti-
cal distribution of attributes and types to complete triples, and to identify false
triples. SDType infers the types of entities by statistically distributing the types
of head and tail entities, similar to the weighted voting mechanism, which assigns
weight to the voting of each attribute. SDValidate first calculates the frequency
of the relation-tail entity, and the low-frequency triples are further calculated
by the statistical distribution of attributes and types. The triples with scores
less than the threshold are considered to be potentially wrong. Jang et al. [7]
proposed a pattern-based method to evaluate the quality of KG triples. This
method directly analyzes the data pattern in KGs. According to the assumption
that more frequent patterns are more reliable, the patterns with high occurrence
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rates are selected, including the head entity patterns and the tail entity patterns,
etc., and then these patterns are used for triples quality analysis.

Unlike the above previous works, we focus on the GCNs with ontology seman-
tics, and propose an iteratively learning graph convolutional network model
called TterG for the knowledge reasoning on large-scale KGs. The model is capa-
ble of propagating relations layer-wisely as well as combining both rich structural
information in KGs and the ontology semantic information. To the best of our
knowledge, the IterG is the first work to integrate ontology semantic information
into GCNs for knowledge reasoning.

3 Preliminaries

The notations used throughout this paper are defined first. A KG G = {E, R, T}
contains a set of entities E, a set of relations R, and a set of triples T' =
{(h,r,t) | h,t € E;r € R}. Given a triple (h,r,t), the symbols h,r, and ¢
denote head entity, relation, and tail entity, respectively. For instance, a triple is
(Tianjin,isLocatedIn,China) , which means that Tianjin is located in China.

3.1 Graph Convolutional Networks

Graph Convolutional Neural Networks (GCNNs) generalize traditional convo-
lutional neural networks to the graph domain. There are mainly two types of
GCNNs: spatial GCNNs and spectral GCNNs. Spatial GCNNs view the convo-
lution as “patch operator” which constructs a new feature vector for each node
using its neighborhood information. Spectral GCNNs define the convolution by
decomposing a graph signal s € R"™ (a scalar for each vertex) on the spectral
domain and then applying a spectral filter gy (a function of eigenvalues of Lgyy,)
on the spectral components. However, this model requires explicitly computing
the Laplacian eigenvectors, which is impractical for real large graphs. A way to
avoid this problem is approximating the spectral filter gy with Chebyshev poly-
nomials up to k-th order. Defferrard et al. [4] applied this technique to build a
k-localized ChebNet, where the convolution is defined as:

K
go * S ~ Z 01, T (Lsym)s, (1)
k=0

where s € R"™ is the signal on the graph, gy is the spectral filter, x denotes
the convolution operator, T}, is the Chebyshev polynomials, and ' € R¥ is a
vector of Chebyshev coefficients. By the approximation, the ChebNet is actually
spectrum-free.

However, some disadvantages exist in the first-generation parameter method,
for example, the convolution kernel does not have spatial localization. In [8], Kipf
and Welling simplified GCNNs by limiting K = 1 and approximating the largest
eigenvalue A4 Of Leym by 2. In this way, the convolution becomes

ge*s:e(HD—%AD—%) s, (2)
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where 6 denotes the only Chebyshev coefficient left. The advantages of the con-
volution kernel designed by Eq. (2) are: (1) the convolution kernel has only one
parameter, so the complexity of the parameters is greatly reduced; (2) convolu-
tion kernel has good spatial localization. We focus on this simplified GCN model
in the rest of this paper.

3.2 OWL Web Ontology Language Axioms

In this paper, we mainly study how to integrate ontology semantic information
into GCNs. Axioms are the main components of KG ontologies, since they are
important to enrich semantics in KGs.

OWL (Web Ontology Language) is a semantic web ontology language with
formally defined meaning and is designed to represent rich and complex knowl-
edge about entities and relations. OWL defines multiple types of axioms, which
can be used for rule reasoning. Our model is inspired by the IterE [24] model,
which proposes seven object attribute expression axioms selected from the OWL
ontology language. Essentially, for each type of axioms, we can draw rule conclu-
sions through the embeddings of relations based on the linear mapping hypothe-
sis. For instance, considering axiom SymmetricOP (hasF'riend), if a KG contains
the triple (Alice, hasFriend, Bob), according to the rule conclusion of symmetric
axiom in Table 1, a new triple (Bob, hasFriend, Alice) can be inferred. So the
axioms that the relations satisfy can be obtained by calculating the similarity
between the embeddings of relations and the rule conclusions. In general, the
higher the similarity, the more likely the relations is to satisfy the corresponding
axioms. The details of the conclusions of each axiom are listed in Table 1, where
the rule form (z,7,z)! of ReflexiveOP(OPE) means reflexive.

Table 1. Seven types of axioms and translated rule formulation.

Object property axiom Rule form

ReflexiveOP(OPE) (z,7,z)"

SymmetricOP(OPE) (y,r,x) — (z,7,9)
TransitiveOP(OPE) (x,7,2) — (x,7,9), (y,7, 2)
EquivalentOP(OPE; ... OPE,) (z,7r2,y) — (z,71,7)

SubOP(OPE; OPE;) (x,r2,y) «— (z,71,9)
InverseOP(OPE; OPE;) (z,7r1,y) < (y,72,2)
Sub0P(0PChain(OPE; ... OPE,) OPE) | (yo,7,y2) < (yo,71,91), (Y1,72,y2)

4 The IterG Model

In this section, we describe our proposed IterG model in detail. Given a KG
G = {E, R, T}, our objective is to learn structural and ontological information
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at the same time and complement each other’s advantages, while graph con-
volutional networks only learn the structural characteristics of nodes without
considering the semantic information on the KGs. So we seamlessly integrate
ontology semantic information into GCNs via the IterG model.

4.1 Intuition

We first introduce the overall architecture of IterG before reporting the detailed
implementation of model’s design principle that conforms to the template
method design pattern, which is shown in Fig.1 and includes two main parts:
(i) auto-encoder layer and (ii) reasoning layer.

Auto-encoder layer

1ake] IndinQ

/

Relation R

Input ﬁ

Reasoning layer

Axioms with score

N o

Fig. 1. The IterG architecture.

N\

Auto-encoder layer extracts the structural information from KGs through
a two-layer graph convolutional neural network, thereby obtaining the embed-
dings of nodes and relations.

Reasoning layer uses the embeddings of relations to conduct axiom induc-
tion, and then uses the axiom injection to select triples with high confidence and
adds them to the original KG for the next iterative learning.

4.2 Graph Auto-Encoder Model

In order to obtain the embeddings of nodes and relations in KGs, we introduce a
graph auto-encoder model comprised of an entity encoder and a scoring function
(decoder). In this paper, GCNs are used as the encoder and ANALOGY as
the decoder. First, we use a two-layer graph convolutional neural network to
obtain the embeddings of the nodes in KGs, and then use ANALOGY to get the
embeddings of the relations, which is shown in Fig. 2.
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Fig. 2. Graph auto-encoder model.

As the encoder, the R-GCN model maps each entity v; € V to a real-valued
vector e; € R%. The R-GCN model use the following propagation rule expressed
in the message-passing architecture [6] that aggregates information from a node’s
local neighbors and forwards the aggregated information to the next layer,

1
=0 (S Y C_—W,Sl>h§” +WORD (3)

reRjeENT V"

where N; denotes the neighbors of node ¢ under the relation r € R, ¢;, is a

normalization constant,  denotes an activation function, and hgl) is the hidden
state of i-th node at the relation r € R. This layer-wisely propagation model can
be implemented in sparse-dense matrix multiplications and has a computational
complexity linear to the number of edges.

ANALOGY is used as the decoder in the experiments and ANALOGY per-
forms well on the standard link prediction task. In ANALOGY, every relation r
is associated with a diagonal matrix M, € R?*? and a triple (h,r,t) is scored as

flh,rt) = e:,eret ) (4)

The main innovation of ANALOGY is to apply analogy inference to the KG
embedding, which adds constraints to the model’s score function to capture the
information of the analogy structure in KGs, thereby optimizing the embedding
representation of entities and relations in KGs.

4.3 Rule Learning

After graph auto-encoder learning, the learning entity is represented by real-
valued vectors and the relation is represented by matrices, which are used for
rule learning. In order to learn new rules via relation matrices, we introduce
the IterE [24] model, which employs seven object attribute expression axioms
selected from the OWL ontology language. IterE is proposed based on the
basis of embeddings learned with linear map assumption. Essentially, for each



IterG: An Iteratively Learning GCNs with Ontology Semantics 235

type of axioms, we can draw rule conclusions through the embeddings of rela-
tions based on the linear mapping hypothesis. For instance, considering axiom
SymmetricOP (hasFriend), if a KG contains the triple (Alice, hasFriend, Bob),
according to the rule conclusion of symmetric axiom in Table1, a new triple
(Bob, hasFriend, Alice) can be inferred. So the axioms that the relations satisfy
can be obtained by calculating the similarity between the relation embeddings
and the rule conclusions. In general, the higher the similarity, the more likely
the relations is to satisfy the corresponding axioms. The rule conclusions of the
OWL axioms are listed in Table 2.

Table 2. OWL axioms and rule conclusion.

Object property axioms | Rule conclusion
ReflexiveOP(r) M, =1
SymmetricOP(r) MM, =1
Transitive0OP(r) M, M, =M,
EquivalentOP(r1,72) M,, =M,,
sub0P(ry, r7) M, =M,,
inverseOP(ry,r2) M, M,, =1
sub0P(0OPChain(ri,r2),r) | My, M,, = M,

Axiom Induction. After we calculated the relation embeddings using the
graph auto-encoder model, relation embeddings are used to induce a set of
axioms, denoted as A. To this end, IterG employs an effective pruning strat-
egy to generate a possible axiom pool P which contains all possible axioms.
Then we calculate the similarity between the relation embeddings and the rule
conclusions to predict the score for each axiom p € P.

Before calculating axiom scores with relation embeddings, concrete relations
are applied to replace relation variables r, 71,72, and r3 in Table2. As long as
more than one axioms is satisfied, this axiom will be added to the pool, and a
pool of possible axioms P is produced. In general, there are two methods for
generating axiom pool. One way is to find possible axioms by traversing all the
relations, however, the complexity of this method is too high. Another method is
to generate axiom pool using random walks on KGs, but it is cannot be ensured
that all possible axioms are covered. Therefore, we adopt a pruning strategy
that combines traversal and random selection, which achieves a good balance
between complexity and the coverage of possible axioms.

After getting relation embeddings and axiom pool P, a score s, for each
axiom p € P can be calculated based on the rule conclusions for each type of
axioms. MY} and M5 denote the relation embeddings and the rule conclusions,
respectively, which may be a single matrix or the dot product of two matrices.
Generally, the values of MY and MY will be quite similar but not equal during
the calculating process. So we calculate the similarity between M} and M5 and
when the higher the similarity, the more confident the axiom p will be.
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Axiom Injection. IterG can infer a set of new triplets T}, through axiom
injection with a KG G and a possible axiom set A, which employs axiom injection
to infer new triples. The process of reasoning can be summarized in the following
form:

(hp7 Tp7 tp) — (hla 1, tl)a (h27 T2, t2)7 ceey (hn7 Tn, tn) (5)

where the right side triples (hg,7k,tx) € T with k € [1,n] are generated from
the rule conclusions of axioms, and (h?,rP,tP) ¢ T is a new inferred triple which
will be added into KGs.

A new set of triples Tpew = {(hP,rP,tP) | h? € E or t? € E} can be
obtained via high-confidence axioms after axiom injection. Thus, the previous
KG is updated. Then the process goes back to the graph auto-encoder model to
start a new learning iteration.

5 Experimental Evaluation

In this section, our method is evaluated on the link prediction task. Extensive
experiments are conducted to verify the validity of our IterG model on both
benchmark and real-world KGs.

5.1 Datasets

In this research, we evaluate our models on benchmarks WN18, FB15k, and
FB15k-237. Link prediction tasks are usually performed on FB15k and WN18,
which are subsets of relational database Freebase and WordNet, respectively.
WordNet is a semantic vocabulary KG, which has been widely used in the field
of natural language processing. Freebase is a well-known knowledge base con-
taining general facts. We also select FB15k-237 as the experimental data set,
which removed all inverse triple pairs, as in [18] Toutanova and Chen found that
both FB15k and WN18 have serious flaws. A simple baseline LinkFeat using a
linear classifier on the sparse feature vector of the observed training relationship
can greatly outperform other methods [18]. Table3 gives a summary of these
datasets.

Table 3. Datasets used in the experiments.

Dataset WN18 | FB15k |FB15k-237
Entities 40,943 | 14,951 | 14,541
Relations 18 1,345 237
Train edges | 141,442 | 483,142 | 272,115
Val. edges 5,000 | 50,000| 17,535
Test edges 5,000 | 59,071 | 20,466
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In addition to the above three datasets, we also use two sparse datasets
WN18-sparse and FB15k-sparse, which contain only sparse entities. It is explored
whether IterG really contributes to sparse entity embeddings on sparse datasets.
Table 4 gives a summary of these datasets.

Table 4. Sparse datasets used in the experiments.

Dataset WN18-sparse | FB15k-sparse
Entities 40,943 14,951
Relations 18 1,345
Train edges | 141,442 483,142
Val. edges 3,624 18,544
Test edges 3,590 22,013

5.2 Baselines

DisMult [23] is selected as the first baseline, which is a common baseline for link
prediction experiment, and it can perform well on standard data sets such as
FB15k. However, DisMult cannot model antisymmetric and inverse modes due
to the symmetric nature of the model. We add LinkFeat proposed in [18] as a
second baseline, which is a simple neighbor-based LinkFeat algorithm.

We further compare IterG to ComplEx [19], HolE [10], and R-GCN [12],
which are the state-of-the-art models for link prediction. ComplEx solves the
problem of DisMult and can infer symmetric and antisymmetric modes in the
complex space. In addition, it can also derive inverse rules because of the exis-
tence of conjugate complex numbers. HolE is simlar to ComplE, however, HolE
replaces the vector-matrix product with circular correlation. Finally, we also
compare with IterE on sparse datasets.

5.3 Experimental Settings

The experimental settings are mainly divided into two parts, including graph
auto-encoder model and rule learning. We first introduce the experiment set-
tings of the graph auto-encoder model. For FB15k and WN18, a basic decom-
position, with a single encoding layer and two basic functions, is employed to
obtain the results. For FB15k-237, when the block dimension is 5 X 5 and embed-
ding dimensional equals 500, the block decomposition performs the best. Before
normalization, encoder is regularized via edge dropout. The dropout rate of the
self-loops is equal to 0.2, and the dropout rate of the other edges is equal to 0.4.
And [2 regularization is applied to the decoder with a parameter of 0.01. Adam
optimizer is used in the graph auto-encoder model with a learning rate of 0.01.
Finally, our model and baselines are trained with full-batch optimization.

Then we introduce the experimental settings of the rule learning part. In
the part of axiom induction, the minimum axiom probability p is set to 0.5 and
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the inclusion probability t is set to 0.95. For axiom injection, in order to choose
axioms with high confidence as much as possible and introduce as little noise as
possible, a threshold @ is set for each dataset and axioms with scores sqziom > 0
are regarded as high quality axioms.

5.4 Results

Two commonly evaluation metrics are employed to provide results: Mean Recip-
rocal Rank (MRR) and Hits@n, which can be calculated in the raw and the
filtered setting [12]. The experimental results show both filtered and raw MRR,
and filtered Hits@Q1, Hits@3, and Hits@10.

Table 5. Results on the Freebase and WordNet datasets.

Model FB15k WNI18

MRR Hits @ MRR Hits @

Raw |Filtered|1 3 10 Raw |Filtered|1 3 10
LinkFeat 0.779 0.804 0.938 0.939

DistMult |0.248 |0.634 0.522 |0.718 |0.814 |0.526 |0.813 |0.701 |0.921 |0.943
R-GCN ]0.251|0.651 |0.541 |0.736 10.825 |0.553 |0.814 |0.686 |0.928 0.955
HolE 0.232 |0.524 0.402 |0.613 |0.739 |0.616|0.938 0.930 |0.945 [0.949
ComplEx|0.242 [0.692 [0.599 |0.759 [0.840 0.587 |0.941 |0.936|0.945 |0.947
IterG 0.245 |0.684 |0.603/0.765|0.853|0.592 |0.943 [0.933 |0.947|0.951

Table 6. Results on FB15k-237.

Model MRR Hits @

Raw | Filtered | 1 3 10
LinkFeat 0.063 0.079
DistMult | 0.100 |0.191 0.106 |0.207 |0.376
R-GCN |0.158|0.248 0.153 | 0.258 | 0.414
TterG 0.153 [0.253 |0.148 |0.267|0.421
CP 0.080 |0.182 0.101 |0.197 |0.357
TransE | 0.144 |0.233 0.147 | 0.263 | 0.398
HolE 0.124 |0.222 0.133 |0.253 |0.391
ComplEx | 0.109 |0.201 0.112 |0.213 |0.388

Table 5 demonstrates the experimental results of the IterG model and other
models on FB15k and WN18. On the FB15k and WNI18 datasets, IterG out-
performs the DistMult, but is not as good as LinkFeat like all other systems on
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these two dataset. Compared with R-GCNs, the experimental results of IterG
are also improved, which exactly demonstrates that the semantic information in
KGs is effective for knowledge reasoning, and the ontology semantic information
can improve the performance of GCNss.

Table 7. Results on the sparse datasets.

Model FB15k-sparse WN18-sparse

MRR Hits @ MRR Hits @

Raw |Filtered|1 3 10 Raw |Filtered|1 3 10
TransE 0.335 |0.418 |0.102 |0.711 |0.847 |0.255 [0.398 0.258 |0.486 |0.645
DistMult 0.558 [0.738 |0.593 |0.875 |0.931 |0.324 |0.600 |0.618|0.651 0.759
ComplEx 0.677 [0.911 |0.890 |0.933 /0.944 |0.327 |0.616 |0.540 |0.657 |0.761
ANALOGY|0.675 |0.913 |0.890 |0.934(0.944|0.331 |0.620 |0.543 |0.661 |0.763
R-GCN 0.673 |0.907 |0.894/0.933 |0.944/0.328 |0.613 |0.537 |0.659 |0.763
ITerE 0.675 |0.901 |0.870 |0.931 |0.948|0.359 (0.613 0.529 |0.662 |0.767
TterG 0.682/0.908 |0.885 (0.923 |0.945 |0.365|0.617 |0.548 [0.667|0.768

The results of the IterG model and other models on FB15k-237 are demon-
strated in Table6. It can be inferred from the results that our IterG model is
much better than DistMult, highlighting the importance of a separate encoder
model. And in FB15k-237, the performance of the LinkFeat is worse than other
models since inverse relations have been deleted. As aforementioned, the per-
formance of IterG and R-GCN on FB15k-237 is similar. The IterG model is
further compared with other models and it also exhibits superior performance.
The above results indicate that the ontology semantic information can effectively
enhance the reasoning ability of IterG.

In Table 7, we evaluate the IterG model and other models on sparse datasets.
First, the link prediction results of IterG perform better than ANALOGY, which
means most of the triplets injected into GCNs learning are useful. And the link
prediction results also show that learning axioms from graph auto-encoder model
works well. Second, IterG outperforms IterE on WN18-sparse and FB15k-sparse,
which shows that GCNs can better extract the structural information in KGs,
thereby generating more accurate relation embeddings. The results show that,
even in the sparse datasets, our IterG model demonstrates its superiority over
other models.

Based on the experimental results, we can conclude that: (1) the results in
link prediction demonstrate that IterG outperforms all baselines, which indicates
that IterG is capable of fusing ontology semantic information into GCNs, and
(2) ontology semantic information in the IterG model can significantly improve
the knowledge reasoning ability of GCNs.
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6 Conclusion

In this paper, we propose an novel GCN framework, named IterG, for knowledge
reasoning. In IterG, the structural and ontology semantic information on KGs are
extracted at the same time, and the rule learning and GCNs are seamlessly fused
to better accomplish the knowledge reasoning task. In particular, to enhance the
reasoning ability of the model, we extract the ontology semantic information in
KGs via rule learning. The model is capable of propagating relations layer-wisely
as well as combining both rich structural information in KGs with the ontology
semantic information. The evaluation on five real-world datasets demonstrates
that our method outperforms the state-of-the-art approaches, and IterG can
effectively and efficiently fuse ontology semantics into GCN .
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