q

Check for
updates

An Index Method for the Shortest Path
Query on Vertex Subset for the Large
Graphs

Zian Pan, Yajun Yang®™), and Qinghua Hu

College of Intelligence and Computing, Tianjin University, Tianjin, China
{panzian,yjyang,huginghua}@tju.edu.cn

Abstract. Shortest path query is an important problem in graphs and
has been well-studied. In this paper, we study a special kind of shortest
path query on a vertex subset. Most of the existing works propose various
index techniques to facilitate shortest path query. However, these indexes
are constructed for the entire graphs, and they cannot be used for the
shortest path query on a vertex subset. In this paper, we propose a novel
index named pb-tree to organize various vertex subsets in a binary tree
shape such that the descendant nodes on the same level of pb-tree consist
of a partition of their common ancestors. We further introduce how to
calculate the shortest path by pb-tree. The experimental results on three
real-life datasets validate the efficiency of our method.

Keywords: Shortest path - Vertex subset - Index

1 Introduction

Graph is an important data model to describe the relationships among various
entities in the real world. The shortest path query is a fundamental problem on
graphs and has been well studied in the past couple of decades. In this paper, we
study a special case of the shortest path query problem. Consider the following
applications in the real world. In social networks, some users need to investigate
the shortest path inside a specified community for two individuals. For example,
someone intends to know another by the peoples with the same hobby or occu-
pation. In transportation networks, some vehicles are restricted to a designated
area such that they need to know the shortest route inside such area. The query
problem in the above applications can be modeled as the shortest path query on
a given vertex set for graphs. Given a graph G(V, F) and a vertex subset Vs € V|
it is to find the shortest path from the starting vertex v, to the ending vertex
ve on the induced subgraph of G on V5.

It is obvious that the shortest path on a vertex subset V; can be searched
by the existing shortest path algorithms, e.g. Dijkstra algorithm. However, these
algorithms are not efficient for the shortest path query on the large graphs. Most
existing works propose various index techniques to enhance the efficiency of the

© Springer Nature Switzerland AG 2020
X. Wang et al. (Eds.): APWeb-WAIM 2020, LNCS 12317, pp. 69-85, 2020.
https://doi.org/10.1007/978-3-030-60259-8_6

70 Z. Pan et al.

shortest path query on the large graphs. The main idea of these works is that:
build an index to maintain the shortest paths for some pairs of vertices in a graph.
Given a query, algorithms first retrieve the shortest path to be visited among the
vertices in the index and then concatenate them by the shortest paths which are
not in the index. Unfortunately, such index techniques cannot be used for the
shortest path problem proposed in this paper. It is because the vertex subset Vj
is “dynamic”. Different users may concern about the shortest path on distinct
vertex subset V. The indexes for the entire graph G may not be suitable for the
induced graph G on some given vertex subset Vs. The shortest path searched
using the indexes for entire graph G may contain some vertices that are not in
Vs. Therefore, the important issue is to develop an index technique such that it
can be utilized for answering the shortest path query on various vertex subsets.

In this paper, we propose a novel index, named pb-tree, to make the shortest
path query on a vertex subset more efficient for the large graphs. The pb-tree T’
is a binary tree to organize various vertex subsets of V' such that all the vertex
subsets in the same level of T' form a partition of V. The partition on the lower
level is essentially a refinement of that on a higher level. By pb-tree, several
vertex subsets with the highest level, which are included in V;, can be retrieved
to answer the shortest path query efficiently on V by concatenating the shortest
paths maintained in these vertex subsets.

The main contributions of this paper are summarized below. First, we study
the problem of the shortest path query on a given vertex subset and develop a
novel index pb-tree to solve it. We introduce how to construct pb-tree efficiently.
Second, we propose an efficient query algorithm based on pb-tree to answer such
shortest path query. Third, we analyze the time and space complexity for pb-tree
construction and query algorithm. Forth, we conduct extensive experiments on
several real-life datasets to confirm the efficiency of our method.

The rest of this paper is organized as follows. Section 2 gives the problem
definition. Section 3 describes what is pb-tree and how to construct it. We intro-
duce how to answer the shortest path query on a vertex subset using pb-tree in
Sect. 4 and conduct experiments using three real-life datasets in Sect. 5. Section 6
discusses the related works. Finally, we conclude this paper in Sect. 7.

2 Problem Statement

A weighted graph is a simple directed graph denoted as G = (V, F,w), where
V' is the set of vertices and E is the set of edges in G, each edge e € F is
represented by e = (u,v), u,v € V, e is called u’s outgoing edge or v’s incoming
edge and v (or u) is called u (or v)’s outgoing(or incoming) neighbor. w is a
function assigning a non-negative weight to every edge in GG. For simplicity, we
use w(u,v) to denote the weight of the directed edge (u,v) € E. A path pin G
is a sequence of vertices (vy,va, -+ ,vk), such that (v;,v;41) is a directed edge in
G for 1 <i < k—1. The weight of path p, denoted as w(p), is defined as the sum
of the weight of every edge in p, i.e., w(p) = >, ;cp_q wW(Vi, Viy1). Our work
can be easily extended to handle the undirected graphs, in which an undirected
edge (u,v) is equivalent to two directed edges (u,v) and (v, u).

An Index Method for the Shortest Path Query on Vertex Subset 71

12 34 (v1,v2, vy, 6)
@ @ (171071)231’477)6)
)
/|u7| [us] [ug]

Lus [2| [[us][g |[us | [us]

(a) A graph GG with six clusters (b) The pb-tree of G

Fig. 1. A graph G and the pb-tree of it (Color figure online)

In this paper, we study a special kind of shortest path query restricted to
a vertex subset. Given a vertex subset Vi C V, an induced subgraph on Vi,
denoted as G4(Vs, E), is a subgraph of G satisfying the two following conditions:
(1) Es C E; (2) for any two vertices v;,v; € Vs, if (v;,v;) € E, then (v;,v;) € Es.
We say a path p is in G if all the vertices and edges that p passing through are
in G4. Next, we give the definition of the shortest path query on a given vertex
subset V.

Definition 1 (The shortest path query on a vertex subset). Given a
graph G = (V, E,w), a vertex subset Vs € V', a source vertex vs and a destination
vertex v., where vs,v. € Vs and Gy is the induced graph on Vy, the short path
query on Vs is to find a path p* with the minimum weight w(p*) among all the
paths in Gy.

Figure 1(a) illustrates an example graph G and V; is bounded in red dot line.
The shortest path from v1g to v2 on G and V; are (v19, v12,v2) and (vig, v14, V2)
respectively because v15 is not in V.

3 Partition-Based Tree for Shortest Path Query
on a Vertex Subset

In this section, we propose a novel index, named Partition-Based Tree (or
pb-tree for simplicity), to improve the efficiency of the shortest path query on a
given vertex subset. A pb-tree, denoted as T, essentially is an index to organize
several vertex subsets in a binary tree shape. Specifically, every leaf node in pb-
tree T represents a vertex subset, and it can be regarded as a cluster of V. Thus
the set of leaf nodes is a partition of V. Every non-leaf node is the super set of
its two children. By pb-tree, the nodes in pb-tree which are included in a given
Vs can be anchored rapidly and then they can be utilized to answer the shortest
path query on Vi. In the following, we first introduce what is pb-tree and then
discuss how to construct it. Finally, we explain how to partition a graph into
several clusters.

72 Z. Pan et al.

Table 1. Frequently used notations

Notation | Description

I(uy) The level of the node u; € T

P, A shortest path tree rooted at vy on G

S; The set of all the shortest path trees rooted at all the entries of u; on G;
Py The shortest path from v to vy in G

Qz.,y The abstract path from vz to vy in G

A; The set of all the abstract paths for all the pairs of entry and exit in u;

3.1 What Is Partition-Based Tree?

Definition 2 (Partition). Given a graph G(V,E), a partition P of G is a
collection of k vertex subsets {Vi,--- ,Vi} of V, such that: (1) forVV;, V; (i # j),
VinV; =0; (2) V =U c;< Vi. Each' V; CV is called a cluster in G. A vertex
vy 1s called an entry of cluster V; under partition P, if (1) v, € Vi; and (2) Jvy,
vy & Vi Nvy € N™(vg). Similarly, A vertex vy is called an exit of cluster V;,
if (1) vy € Vi; and (2) vy, vy, ¢ Vi Avy € Nt(v,). N (vg) and Nt (vy,) are
vz ’s tncoming and outgoing neighbor set, respectively. Entries and exits are also
called the border vertices.

We use V.entry and V.exit to denote the entry set and exit set of G respec-
tively, and use Vj.entry and Vj.exit to denote the entry set and exit set of
cluster V; respectively. Obviously, V.entry = |J,.,<, Vi-entry and V.exit =
Ui<ics Vicemit.

The pb-tree T is essentially an index to organize various vertex subsets in
a similar shape as a binary tree. Given a partition P of GG, a pb-tree can be
constructed. Specifically, every leaf node u; € T corresponds to a cluster V; under
P and all leaf nodes consist of the partition P. Every non-leaf node corresponds
to the union of the vertex subsets represented by its two children, respectively.
Each node in pb-tree has a level to indicate the location of it in the pb-tree. We
use [(u;) to denote the level of the node u; € T. For every leaf node u; in T, we
set [(u;) = 1. For the root node uyo0t of T, we set [(uroot) = h. Note that all
the non-leaf nodes on the same level consist of a partition of G and each node
can be regarded as a cluster under this partition. The partition comprised of the
nodes on the low level is a refinement of the partition on the high level.

There are two kinds of information should be maintained with a pb-tree T.
A shortest path tree set is maintained for every leaf node and an abstract
path set is maintained for every non-leaf node. We first introduce the shortest
path tree set below.

Given a connected graph G(V,FE) and a vertex v, € V, a shortest path
tree rooted at v, on (G, denoted as P,, is a tree such that the distance from
v, to any other vertex v, in the tree is exactly the shortest distance from v,
to vy in G. Every leaf node u; € T is essentially a vertex subset of V. Let G;
denote the induced subgraph of G on u;. The shortest path tree set S; of u; is

An Index Method for the Shortest Path Query on Vertex Subset 73

the set of all the shortest path trees rooted at all the entries of u; on Gy, i.e.,
Si = {Py|vy € us.entry, P, C G;}.

We next give the definition of the abstract path for every non-leaf node in
pb-tree.

Definition 3 (Abstract Path). Given a non-leaf node u; € T, v, and v, are
the entry and exit of u; respectively. An abstract path from v, to v,, denoted as
gy, 1S a verter sub-sequence of the shortest path py , from vy to vy in G such
that all the vertices in ay, are the border vertices of u;’s children.

Based on above definition, an abstract path a,, can be considered as an
“abstract” of the shortest path p; , by consisting of the border vertices of u;’s
children. For every non-leaf node u; € T, its abstract path set A; is the set of all
the abstract paths for all the pairs of entry and exit in u;, i.e., 4; = {ay ylvs €
w;.entry, vy € u;.exit}.

Figure 1(b) shows the pb-tree of graph G in Fig.1(a). For a leaf node uy, a
shortest path tree set is maintained for it. For a non-leaf node u7, an abstract
path set is maintained for it. For the readers convenience, Table1 lists some
frequently used notations.

3.2 How to Construct Partition-Based Tree?

As shown in Algorithm 1, the pb-tree is constructed in a bottom-up manner.
Given a partition P of G, Algorithm 1 first calls LEAF-NODE (V;) to construct
the leaf node wu; for every cluster V; € P (line 2—4). U is a temporary set to
maintain all the nodes on the same level h. In each iteration, Algorithm 1 calls
NON-LEAF-NODE (U) to construct the non-leaf nodes on the level h + 1 by
merging the nodes on the level h (line 5-7). When U is empty, Algorithm 1
terminates and returns the pb-tree T'. In the following, we introduce how to
construct the leaf nodes and the non-leaf nodes by LEAF-NODE (V) and NON-
LEAF-NODE (U) respectively.

Algorithm 1: PARTITION-BASED-TREE (G, P)

Input: G, a partition P of G
Output:the pb-tree T based on P.

1: T—0,U«— 0 h+1;

2: for each cluster V; € P do
3 LEAF-NODE (V;);

4: U —UU{u};

5: while U # () do

6 NoN-LEAF-NODE (U);
7 h+—h+1,U < UUTy;
8: return T

74 Z. Pan et al.

Algorithm 2: LEAF-NODE (V;)
L u; Vi, Si 0
2: for each v, € V;.entry do
3: computes the shortest path tree P, rooted at v, on Gj;
4. S; — S; U {P;p}
5: interts u; with S; into T as a leaf node;

Leaf Node Construction: Given a partition P of G, all the clusters in P are
the leaf nodes of T'. The pseudo-code of LEAF-NODE is shown in Algorithm 2. For
each cluster V; € P, Algorithm 2 first sets V; as a leaf node u; and calculates the
shortest path tree set S; (line 1). There are several methods and we use Dijkstra
algorithm to compute the shortest path tree P, for each entry v, € wu;.entry (line
3). Finally, Algorithm 2 inserts u; with S; and the crossing paths into pb-tree T'
as a leaf node (line 5).

Figure 2 depicts a cluster V7 (Fig.2(a)) and its shortest path trees rooted at
two entries in V; (Fig.2(b)). For example, the shortest path from vy to vy in G
is exactly the simple path from v; to vy in the shortest path tree P;.

(a) Cluster V; of G (b) The shortest path trees in u;

Fig. 2. Leaf node construction

Non-leaf Node Construction: The non-leaf nodes in pb-tree T" are constructed
level by level. A temporary set U is utilized to maintain all the nodes on the
level A which have been constructed in 7" and then Algorithm 3 constructs all the
non-leaf nodes on the level A+ 1 by merging two nodes with the maximum size of
crossing edge set in U iteratively. A crossing edge set between node u; and u;
on the same level of T', denoted as C; ;, is the set of all the crossing edges between
u; and uj, ie., C;; = {(va,0y) |0z € wi A vy € uj Or vy € uj A vy € u;}. It is
worth noting that C; ; = C;;. In each iteration, two nodes u; and u; with the
maximum |Cj, j| in U are merged into a new node uj. Note that the ug.entry and
uy.exit are the subset of u;.entry U u;.entry and u;.exit U u;.exit respectively.
It is because some of the entries and exits of u; (or u;) become the internal
vertices of uj, after merging u; and u;. Algorithm 3 computes the abstract path
set Ay for ug by Dijkstra algorithm. Finally, uj is inserted into T" with Ay as
the parent of u; and u;. Note that there may be only one node u; in U in the
final iteration. In this case, u; will be left in U and be used for constructing the
level h 4 2 of T' with all the non-leaf nodes on the level h + 1.

An Index Method for the Shortest Path Query on Vertex Subset 75

Algorithm 3: NON-LEAF-NODE (U)

1: while |U| > 1 do

2: selects u; and u; with the maximum |C; ;| from U,
Uk < u; U uy;
computes the abstract path set Ay for uy;

inserts uy with Ay into T' as the parent node of u; and wu;;
U«— U\ {ui,u;}

Figure 3 shows the construction of the pb-tree. The leaf nodes are constructed
in the same way as Fig.2. U is {u, us, us, ug, us, ug} in the begining. The algo-
rithm first merges u; and ug into wr, because |Ch 2| = 3 is maximum. The
entries of wy is v1 and v1g. The algorithm uses the Dijkstra algorithm to com-
pute the shortest paths from v and v19. The shortest path from v, to vg on V7
is (v1,v12,v2,v4, V15, V16, Us), and the abstract path aq 6 is (v1,v2,v4,v6). In the
same way, aio¢ is maintained as (vio,v2,v4,vs). After that, ug is mergred by
us and ug. ug is merged by us and uy. To construct the T3, U is {ur,us, ug}.
The algorithm merges u; and ug into uig, cause |C7 g| = 2 is larger than |Cy o
and |Cr o|. After that, U is {ug}, and ug is used to construct the higher level of
T. Then U is {ug, u1p}. u11 is constructed by merging ug and u19. The abstract
paths in those nodes are computed in the same way as computing the abstract
paths in uy.

3.3 How to Partition Graph to Several Clusters

There are several ways to partition a graph to several clusters. For different
partitions, the number of entries and exits are different. In our problem, the fewer
number of entries and exits makes the smaller size of pb-tree index. Intuitively,
the fewer edges among different clusters result in the less number of entries and
exits in graphs. Thus it is a problem to find an optimal partition such that
the edges among different clusters are sparse and the edges in the same cluster
are dense. This problem has been well studied, and there are many effective
and efficient algorithms[1,4,17] to solve it. In this paper, We adopt the METIS
algorithm[1], which is a classic graph partition algorithm.

3.4 Complexity Analysis

For graph G, let m be the number of edges, k£ be the number of clusters, o and
(6 be the maximum number of vertices and edges inside the cluster and a be the
maximum number of the borders in each cluster.

76 Z. Pan et al.

(v1,v2, V4, Vg)
(U107 V2, Uy, Uﬁ)

- - - = = —_— = N =

n

Fig. 3. pb-tree construction

Time Complexity: For each leaf node, the shortest path tree set can be
built in O(a(aloga + (3)) time. All the leaf nodes can be constructed in
O(ka’loga + kaf). As a binary tree, the maximum level of pb-tree is logk + 1
and the maximum number of the non-leaf nodes on level A is zhi_l A non-leaf
node on level h is constructed by merging two children. The entry and the exit
sets of the two children can be merged in O(1). The time complexity of search-
ing all the neighbors of borders on level h is O(m). The number of borders in
a non-leaf node on level h is O(2" @), and the number of the vertices in it
is O(2"'a) because abstract paths are computed only by the borders of the
children. The Dijkstra algorithm is utilized to compute the abstract paths from
each entry. Computing all the abstract paths in a non-leaf node on level A is
in O(2"1a(2"talog(2"'a) + 22"=242)) = O(8"'a?). The time complexity of
constructing the non-leaf nodes on level h is O(4"~'ka® +m). Because there are
log k + 1 levels in pb-tree, then we have

logk+1 4 4
> (@ ha® +m) = mlogh + Sha® (47" — 1) = milogh + Zka® (k* — 1)
h=2

Thus the time complexity of constructing all the non-leaf nodes and pb-tree
are O(mlogk + k3a®) and O(kaB + mlogk + a3k?) respectively.

Space Complexity: In the worst-case, each shortest path tree in a leaf node
contains all the vertices and edges in that node. The number of the shortest
path trees in a leaf node is O(a); thus the number of vertices in each leaf node is
O(ac) = O(a?) and the number of edges is O(af) = O(af3). The space complex-
ity of leaf nodes is O(ka? + ka3). For a non-leaf node on level h, the number of
the borders is 2" 'a, and the number of the abstract paths is O(4"~'a?). In the
worst-case, each abstract path contains all the vertices in the node. The space
complexity of the non-leaf nodes on level h is O(a34"~'k). Because there are
log k + 1 levels in pb-tree, then we have

logk—+1 4 4
> (@47) = cha (407 — 1) = Sk’ (k* = 1)
h=2

An Index Method for the Shortest Path Query on Vertex Subset 7

Algorithm 4: QUERY-PROCESSING (¢ = (Vs, vs, ve))

Input: Vi, vs,ve, pb-tree T, G
Output:p; .

1. Q« Vs, 750

2: while v. € Q do

3: gets v, from @ with minimum 7,
4 if v, is expanded by ay,. then
5 PATH-RECOVER (Q, ay,)

6: if vy € uij.entry then

7 if u; is a complete node then
8 NODE-IDENTIFY (Q, vz, u;)

9: else

10: PARTIAL-SEARCH (Q, vz, u;)

11: if vy & u;.entry V vy € u;.exit then

12: updates the 7 of v;’s outgoing neighbors in Q;
13: dequeues v, from Q

14: return pj .

The space complexity of constructing all the non-leaf nodes is O(k®a®), and
the space complexity of constructing the pb-tree is O(k3a? + kaf3).

4 Query Processing by pb-tree

4.1 Querying Algorithm

In this section, we introduce how to find the shortest path on a given vertex
subset by pb-tree. For a vertex subset Vs, all the nodes in pb-tree can be divided
into three categories: Complete node, Partial node and Irrelevant node.
A node u € T is a complete node for V; if all the vertices in u are included in
Vs, and it is a partial node if there exists a proper vertex subset of u included in
Vs. Correspondingly, v is an irrelevant node if all the vertices in u are outside of
Vs. Note that if a node is a complete node, then all its descendant are complete
nodes. We propose a Dijkstra-based algorithm on pb-tree to make the query
more efficient by expanding the abstract paths in complete non-leaf nodes and
the shortest path trees in partial leaf nodes.

The querying algorithm is shown in Algorithm 4. Algorithm 4 utilizes a prior
queue @ to iteratively dequeue the vertices in V; until the ending vertex v, is
dequeued. In each iteration, a vertex v, is dequeued from) with the minimum
Tz, Where 7, is the distance from the starting vertex vy to it. Initially, @ is set as
Vs. 75 18 0 and 7, is oo for other vertices in V. If v, is an exit and it is expanded
by an abstract path a, ,, Algorithm4 calls PATH-RECOVER to dequeue all the
vertices in the path represented by a, , from @ (line 4-5) and then updates 7,
for every v,’s outgoing neighbor v, in @ (line 12). If v, is an entry of a leaf
node u;, Algorithm4 calls NODE-IDENTIFY to find the complete node u; with
the highest level such that v, is still an entry of u;. NODE-IDENTIFY uses the

78 Z. Pan et al.

Algorithm 5: PARTIAL-SEARCH (Q, Uy, u;)
1: for each v, € P, do

2: if v, ¢ V; then

3: deletes the branch below vy;
4: else

5: if v, € @ then

6: updates p; , and 7y;

Algorithm 6: PATH-RECOVER (Q, ay 4)

1: for each aii+1 C Qy,z do

2: if 3 a child node uy of u;, a; 11 € Ar then
PATH-RECOVER (as,i+1);

else
gets p;j ;11 by searching P;
Q—Q \ p;‘k,z‘—H

abstract paths to expand the exits of u; and then updates () (line 8). Note
that u; may be the leaf node u;. If such u; does no exist, the leaf node u; is a
partial node, then Algorithm 4 calls PARTIAL-SEARCH to expand the vertices in
u; and updates @ (line 10). If v, is not an entry or exit, it must be an internal
vertex in a leaf node u;, then Algorithm 4 updates v,’s outgoing neighbors in)
in the similar way as Dijkstra algorithm (line 12). Algorithm 4 terminates when
the ending vertex v, first dequeued from) and the 7. is the shortest distance
from v, to ve on V. Next, we introduce NODE-IDENTIFY, PARTIAL-SEARCH and
PATH-RECOVER respectively.

Partial Search: For a partial node u; and an entry v,, the shortest path tree P,
of S; is utilized to expand the shortest paths. Algorithm 5 utilizes BF'S to search
P,. For every v, € P,, if vy, ¢ V;, the branch below v, can be ignored (line 3).
And if v, € Q, the Algorithm 5 updates the p; , and 7, (line 6).

Path Recover: For an abstract path a,, of a complete node u;, PATH-
RECOVER computes p; . in the descendant nodes of w;. As shown in Algo-
rithm 6, for each sub-abstract path a; ;1 of a, , which can be found in one of
u;’s children, Algorithm6 calls PATH-RECOVER in that child to compute the
a; i+1 (line 3). Otherwise, Algorithm 6 searches the shortest path tree P; to com-
pute p;,,; (line 5).

Node Identify: Given a leaf node u; and a vertex v, € u;.entry, the pseudo-
code of NODE-IDENTIFY is shown in Algorithm 7. It first finds the parent node
of u;. If v, is an entry of the parent node, and it is a complete node, Algorithm 7
checks the parent node of it in the same way (line 3-4). u; is the complete node
on the highest level and v, is an entry of it. Then Algorithm 7 searches the
shortest path tree P, to update the exits of u; in @, if u; is a leaf node (line 7).
If u; is a non-leaf node, Algorithm 7 utilizes the abstract paths which start from
v, to update the exits of u; in @ (line 9).

An Index Method for the Shortest Path Query on Vertex Subset 79

Algorithm 7: NODE-IDENTIFY (v, u;)

1: finds the parent node wu; of w;;
: while v, € uj.entry and u; is a complete node do
Ui < Uy
finds the parent node u; of u;;

2
3
4
5: Uj < U;

6: if u; is a leaf node then

7: updates the 7 of the exits in) using the shortest path trees in wu;;
8: else

9 updates the 7 of the exits in () using the abstract paths in u;;

4.2 Example

Figure 4 shows the query process from vig to v3 on Vi. Initially, @) is set as V;
and 719 is set to 0. In the 1st iteration, vig is dequeued from Q. v1g is an entry
of a partial node u;. The algorithm searches the shortest path tree Py in u;.
Because v12 is not in V;, only 714 is updated to 4 and pj, ;4 is updated to (10, 14).
v1p is also an exit of u1, 74 is updated to 8 and pj, 4 is updated to (10,4). In the
2nd iteration, vy4 is dequeued from (). Cause v14 is not an entry of uq, algorithm
updates the pj 5 to (10,14,2) by the edge (vi4,v2), and 7 is updated to 6. As
an exit of wp, the algorithm searches the outgoing neighbors of vy in the 3rd
iteration. 74 is updated to 7 and pj, 4 is updated to (10,14,2,4). This is the (1)
of Fig. 4. In the 4th iteration, because v, is an entry of us, and it is not an entry
of uz, Py in ug is searched and 7¢ is updated. In the same way, 77 is updated
in the next iteration, and pj, 7 is updated to (10,14,2,4,15,16,6,7). Then v7 is
dequeued from Q. It is an entry of a complete node u3. The algorithm searches
the pb-tree and finds the complete node ug with the highest level such that vy is
an entry of it. That is the (2) of Fig. 4. In ug, the abstract path a; 5 is utilized
to update the pj, 5 and 75. In the next iteration, vs is dequeued from) and it
is expanded by a7 5. The algorithm computes p7 5 by computing p7 ¢ in uz and
Pg5 in ug. ug and uy are the leaf nodes. Therefore, the algorithm searches P7
in uz and Py in ug. All the vertices in p7 5 are dequeued from Q. After that, 73

(51

Uy

Lur | [us | [Ul
3 S B3)
G Lua [v || us || ue || us || ud |
. ~—_ 7

Fig. 4. A shortest path query from vio to vs on V;

80 Z. Pan et al.

and pj, 5 are updated by the edge (vs,vs). This is the (3) of Fig. 4. In the next
iteration, vs is dequeued from Q. The algorithm terminates and returns pj 5.

4.3 Complexity Analysis

Time Complexity: For a graph GG and a vertex subset Vj, let » and ¢ be the
number of vertices and edges in G, k be the number of clusters, a and a be
the maximum number of vertices and borders in each cluster, 1. and v, be the
number of the complete leaf nodes and the partial leaf nodes. The identification
of each node is in O(1), and the number of nodes in pb-tree is 2k — 1. The time
complexity of identifying all the nodes is O(2k — 1) = O(k). For an entry of a
complete leaf node, the algorithm finds the complete nodes on a higher level in
O(logk+1) = O(logk), when all the complete nodes are on the highest level. For
a complete node on level logk + 1, the number of the borders is O(ka). Searching
the abstract paths from that vertex is in O(ka). Thus the time complexity of
expanding the shortest paths from an entry of a complete leaf node is O(logk +
ka). For an entry of a partial leaf node, the algorithm searches the shortest
path tree in that node in O(«). For the exits of the complete leaf nodes and
the vertices in partial leaf nodes, whose number is O(¢.a + 9,), the algorithm
searches all the neighbors of it in Vi in O(¢car +,ar). For an abstract path, in
the worst-case, it is in the node on level logk+1, and all the borders of that node
are in the path. The number of the borders is O(ka), and for each pair of the
borders, the PATH-RECOVER searches a shortest path tree in a leaf node. The
time complexity of computing such an abstract path is O(ka«). The number of
the borders in complete nodes is ¢.a. To sum up, because ¥, + ¢, = k, o > a,
the time complexity of our method is O(vca(logk + ka) + Ypac + Year +por +
Yeaaka + k) = O(kar + k%a?). In the worst-case, the number of the complete
nodes is zero, and all the shortest path trees can not be utilized. Then time
complexity is O(¢Ypar) = O(rlogr + ¢), which is the time complexity of the
Dijkstra algorithm. In practice, the complexity is much smaller than the worst-
case complexity.

Space Complexity: The query algorithm maintains a prior queue (). In the
worst-case, all the vertices in V; will be dequeued from Q. Therefore, the space
complexity is the number of vertices in Vj, i.e. O(r).

5 Experiements

In this section, we study the performance of our algorithm on three real-life
network datasets. Section 5.1 explains the datasets and experimental settings.
Section 5.2 presents the performance of the algorithms.

5.1 Datasets and Experimental Settings

Experimental Settings. All the experiments were done on a 2.50 GHz Intel(R)

Xeon(R) Platinum 8255C CPU with 128G main memory, running on Linux VM-
16-3-ubuntu 4.4.0-130-generic. All algorithms are implemented by C++.

An Index Method for the Shortest Path Query on Vertex Subset 81

Datasets. We use three real road networks from the 9th DIMACS Implementa-
tion Challenge (http://users.diag.uniromal.it/challenge9/download.shtml). All
the edges of them are the real roads in the corresponding areas. Table 2 summa-
rizes the properties of the datasets. |V| and |E| are the number of vertices and
edges in the road network.

Table 2. Datasets

Dataset | |V |E| Description

NY 264,346 | 733,846 | New York City Road Network

BAY 327,270 | 800,172 | San Francisco Bay Area Road Network
COL 435,666 | 1,057,066 | Colorado Road Network

Query Set. For each dataset, we use four different kinds of partitions, which
partition the graph into 100, 150, 200, and 500 clusters respectively. We construct
a pb-tree for each partition. We study the query performance by varying vertex
subset Vi. We test 9 kinds of queries, where every query set is a set of queries
with a same size of vertex subsets. These vertex subsets contain the 10%, 20%,
30%, 40%, 50%, 60%, 70%, 80% and 90% vertices randomly taken from V. For
each query set, we test 100 random queries and report the average querying time
as the results for the current query set.

5.2 Experimental Results

Exp-1. Build Time of Index. Figure5 shows the build time of the pb-tree
based on different number of clusters. Observe that, as the number of the clusters
increases, the build time of the leaf nodes and the non-leaf nodes are decreased.
The main reasons are as follow. As the number of leaf nodes increases, the
number of the vertices in a single leaf node decreases. And the time to build the
shortest paths tree also decreases. For non-leaf nodes, although the number of
all the non-leaf nodes increases, the time to compute the abstract paths based
on the Dijkstra algorithm also decreases.

1000 leaf nodes =—i— 1200 leaf nodes =—l— 2000 leaf nodes =—ili—

800 non-leaf nodes 1000 1600 on-leaf nodes
w pb-tree == w 800 D pb-tree =——
2 600 e 21200
= i 600 [
2 400 = 400 g 89
® 200 D 500 © 400

0—060 750 200 500 0=—060 150 200 500 080 150 200 500
Partition Partition Partition
(a) NY (b) BAY (c) COL

Fig. 5. Build time of pb-tree

82 Z. Pan et al.

Exp-2. Index Size. Figure6 shows the size of the pb-tree based on different
number of clusters. As the number of the clusters increases, though the size and
the number of non-leaf nodes are increased, the size of leaf nodes and the pb-tree
are decreased. The main reasons are as follow. On the one hand, as the number
of the vertices in a leaf node decreases, the number of the vertices maintained
in the shortest path trees also decreases. On the other hand, for more clusters,
there will be more non-leaf nodes and more abstract paths in them. Therefore,
the size of the non-leaf nodes increases.

leaf nodes =—ll— leaf nodes =—li— leaf nodes =—il—
600 non-leaf nodes 600 non-leaf nodes =800 non-leaf nodes
g pb-tree =3¢=— g pb-tree =—3¢=— g pb-tree =—3¢=—
3400)‘\"\x*x 400 x\xﬂ‘\x 9600 "\"‘*\x
< -\'\-\- % 2 400 .\'\-\-
$ 200 $ 200 3
= £ £ 200
060 750 200 500 060 7806 200 500 060 750 200 500
Partition Partition Partition
(a) NY (b) BAY (c) COL

Fig. 6. Index size of pb-tree

Exp-3. Query Time Based on Different Number of Clusters. Figure7
shows the query time using the four pb-trees based on 100, 150, 200 and 500
clusters on three datasets in four kinds of vertex subsets whose number of the
vertices are 90%, 80%, 70% and 60% of the number of the vertices in V. We made
two observations. The first one is that for the vertex subsets with the same size,
the more clusters the pb-tree is based on, the less time the query processing will
take. The reason is that there are more complete nodes and abstract paths can
be used. Secondly, as the size of the vertex subsets decreases, the query time
also decreases. This is mainly because as the size of the vertex subsets decreases,
more vertices are unreachable, and the query results can be returned faster.

90% =lll= 70% ==the— 90% =l= 70% ==he= 90% =llt= 70% ===
O, O, O, O, O, O,
1000 80% 60% 1000 80% 60% 1000 80% 60%
Z 100 —a— 2 100 2 100
—y
z 10 g0l T | g0
[= =
> 0.1 > 0.1 > 0.1
20.01 ~—— $0.01 20.01
9.001 9.001 9.001 —
> > >
< Z e—— Z
100 1éﬁjst§|%0 500 100 18&]8162%0 500 100 1éﬁjstg|%0 500
(a) NY (b) BAY (c) COL

Fig. 7. Query time based on different number of clusters

Exp-4. Query Efficiency. We compared our algorithm with Dijkstra algo-
rithm. Table 3 shows the query times using the pb-tree based on 100 clusters and

An Index Method for the Shortest Path Query on Vertex Subset 83

the Dijkstra algorithm. On each dataset, we find that the Dijkstra algorithm
takes more time than our method on each size of vertex subset. We also find
that when the size of the vertex subset is 80% of the vertices in V, the time
difference between the two methods is minimal. That is because most of the
nodes in pb-tree are partial nodes in that case, so most of the abstract paths can
not be used. When the size of the vertex subset drops below 50% of the vertices
in V, the query times for both methods tend to stabilize. That mainly because
most of the vertices are unreachable, and the results can be returned quickly.
For our method, the shortest path trees in each leaf node can be used, which
makes our method have a better performance than the Dijkstra algorithm.

Table 3. Query times(s)

Dataset | Method | 90% 830% 70% 60% 50% 40% 30% 20% 10%

NY pb-tree 87.0191|13.8673 | 9.65E-02 | 5.44FE-04 | 6.48E-05 | 1.65E-05 | 2.59E-05 | 8.78E-05 | 2.08E-05
Dijkstra | 969.062|102.884|10.26720 | 4.11E-02 | 5.74E-04 | 4.94E-04 | 2.67E-04 | 1.60E-04 | 2.40E-04
BAY pb-tree 32.8067 | 0.72000 | 9.86E-05 | 4.38E-05 | 3.22E-05 | 8.12E-05 | 3.59E-05 | 5.77E-05 | 2.02E-05
Dijkstra | 542.614 | 10.1591 | 4.34E-02 | 9.45E-04 | 4.52E-04 | 5.02E-04 | 1.74E-04 | 2.91E-04 | 3.00E-04
COL pb-tree 30.3478 | 6.36190 | 1.48E-03 | 2.69E-04 | 6.45E-05 | 4.98E-05 | 8.59E-05 | 5.77E-05 | 4.85E-05
Dijkstra | 743.509 | 90.7764 | 0.494680 | 8.02E-03 | 1.15E-03 | 1.87E-03 | 1.76 E-03 | 1.21E-03 | 9.47E-04

6 Related Work

In this section, we will mainly discuss two categories of related work: the first one
is the existing algorithms for answering unconstrained shortest path queries; the
other one is existing approaches for answering constrained shortest path queries.

In the first category, the traditional shortest path query algorithms, such as
the Dijkstra algorithm|[5], can be used to solve the problems we supposed in this
paper. But it will take a long time to answer the query. The shortest path quad
tree is proposed in [13]. Xiao et al. in [16] proposes the concept of the compact
BFS-trees. A novel index called TEDI has been proposed by Wei et al. in [15]. It
utilizes the tree decomposition theory to build the tree. Ruicheng Zhong et al.
propose a G-Tree model in [18]. Goldberg et al. in [6] propose a method which
is to choose some vertices as landmark vertices and store the shortest paths
between each pair of them. Qiao et al. in [11] propose a query-dependent local
landmark scheme. [2] proposes another novel exact method based on distance-
aware 2-hop cover for the distance queries. However, those methods can not be
used to answer the problem we proposed in this work because the vertices in
those pre-computed paths maybe not in the given vertex subset.

In the second category, several works [7,9,10,14] study the constrained short-
est path problem on a large graph. A Lagrangian relaxation algorithm for the
problem of finding a shortest path between two vertices in a network has been
developed in [7]. H. C. Joksch et al. propose a linear programming approach
and a dynamic programming approach in [9]. Kurt Mehlhorn et al. present the

84 Z. Pan et al.

hull approach, a combinatorial algorithm for solving a linear programming relax-
ation in [10]. [14] tackles a generalization of the weight constrained shortest path
problem in a directed network. Some works aim to answer the query with the
constrained edges. Bonchi et al. propose an approximate algorithm for short-
est path query with edge constraints in [3]. But the algorithm can not support
the exact shortest path query. Michael N. Rice et al. propose a method by pre-
calculating the paths between some of the two vertices with the label of the edge
in [12]. Mohamed S. Hassan et al. construct an index called EDP, which is one
of the state-of-art methods to answer the query with the constrained edges in
[8]. The EDP contains many subgraphs with the same label of edges and stores
every shortest path from an inner vertex to a border vertex in each subgraph.
Those methods can not be used to solve the problem we proposed in this paper,
cause the vertex subset V is not constrained by labels or another weight of the
edges.

7 Conclusion

In this paper, we study the problem of the shortest path query on a vertex subset.
We first give the definition of the shortest path query on a vertex subset. Second,
we propose a novel index named pb-tree to facilitate the shortest path query on
a vertex subset. We introduce what the pb-tree is and how to construct it. We
also introduce how to utilize our index to answer the queries. Finally, we confirm
the effectiveness and efficiency of our method through extensive experiments on
real-life datasets.

Acknowledgments. This work is supported by the National Key Research and Devel-
opment Project 2019YFB2101903 and the National Natural Science Foundation of
China No. 61402323, 61972275.

References

1. Abou-Rjeili, A., Karypis, G.: Multilevel algorithms for partitioning power-law
graphs. In: 20th International Parallel and Distributed Processing Symposium
(IPDPS 2006) Proceedings, Rhodes Island, Greece, 25—29 April 2006. IEEE (2006)

2. Akiba, T., Iwata, Y., Yoshida, Y.: Fast exact shortest-path distance queries on
large networks by pruned landmark labeling. In: Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data, pp. 349-360 (2013)

3. Bonchi, F., Gionis, A., Gullo, F., Ukkonen, A.: Distance oracles in edge-labeled
graphs. In: Proceedings of the 17th International Conference on Extending
Database Technology, EDBT 2014, Athens, Greece, 24—28 March 2014, pp. 547-558
(2014)

4. Dhillon, I.S., Guan, Y., Kulis, B.: Weighted graph cuts without eigenvectors a
multilevel approach. IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 1944-1957
(2007)

5. Dijkstra, E.W., et al.: A note on two problems in connexion with graphs. Numer.
Math. 1(1), 269-271 (1959)

10.

11.

12.

13.

14.

15.

16.

17.

18.

An Index Method for the Shortest Path Query on Vertex Subset 85

Goldberg, A.V., Harrelson, C.: Computing the shortest path: a search meets graph
theory. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2005, Vancouver, British Columbia, Canada, 23-25 Jan-
uary 2005, pp. 156-165 (2005)

Handler, G.Y., Zang, I.: A dual algorithm for the constrained shortest path prob-
lem. Networks 10(4), 293-309 (1980)

Hassan, M.S., Aref, W.G., Aly, A.M.: Graph indexing for shortest-path finding
over dynamic sub-graphs. In: Proceedings of the 2016 International Conference on
Management of Data, pp. 1183-1197 (2016)

Joksch, H.C.: The shortest route problem with constraints. J. Math. Anal. Appl.
14(2), 191-197 (1966)

Mehlhorn, K., Ziegelmann, M.: Resource constrained shortest paths. In: Paterson,
M.S. (ed.) ESA 2000. LNCS, vol. 1879, pp. 326—-337. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-45253-2_30

Qiao, M., Cheng, H., Chang, L., Yu, J.X.: Approximate shortest distance com-
puting: a query-dependent local landmark scheme. In: IEEE 28th International
Conference on Data Engineering (ICDE 2012), Washington, DC, USA (Arlington,
Virginia), 1-5 April 2012, pp. 462-473 (2012)

Rice, M.N., Tsotras, V.J.: Graph indexing of road networks for shortest path
queries with label restrictions. PVLDB 4(2), 69-80 (2010)

Samet, H., Sankaranarayanan, J., Alborzi, H.: Scalable network distance browsing
in spatial databases. In: Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, SIGMOD 2008, Vancouver, BC, Canada, 10-12
June 2008, pp. 43—-54 (2008)

Smith, O.J., Boland, N., Waterer, H.: Solving shortest path problems with a weight
constraint and replenishment arcs. Comput. OR 39(5), 964-984 (2012)

Wei, F.: TEDI: efficient shortest path query answering on graphs. In: Proceedings
of the ACM SIGMOD International Conference on Management of Data, SIGMOD
2010, Indianapolis, Indiana, USA, 6-10 June 2010, pp. 99-110 (2010)

Xiao, Y., Wu, W., Pei, J., Wang, W., He, Z.: Efficiently indexing shortest paths
by exploiting symmetry in graphs. In: 12th International Conference on Extending
Database Technology, EDBT 2009, Saint Petersburg, Russia, 24—26 March 2009,
Proceedings, pp. 493-504 (2009)

Xu, X., Yuruk, N., Feng, Z., Schweiger, T.A.J.: SCAN: a structural clustering
algorithm for networks. In: Berkhin, P., Caruana, R., Wu, X. (eds.) Proceedings
of the 13th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, San Jose, California, USA, 12-15 August 2007, pp. 824-833. ACM
(2007)

Zhong, R., Li, G., Tan, K., Zhou, L.: G-tree: an efficient index for KNN search on
road networks. In: CIKM, pp. 39-48 (2013)

