
Finding the K Nearest Objects over Time
Dependent Road Networks

Muxi Leng1, Yajun Yang1(B), Junhu Wang2, Qinghua Hu1, and Xin Wang1

1 School of Computer Science and Technology, Tianjin University, Tianjin, China
{mxleng,yjyang,huqinghua,wangx}@tju.edu.cn

2 School of Information and Communication Technology, Griffith University,
Brisbane, Australia

j.wang@griffith.edu.cn

Abstract. K nearest neighbor (kNN) search is an important problem
and has been well studied on static road networks. However, in real
world, road networks are often time-dependent, i.e., the time for trav-
eling through a road always changes over time. Most existing methods
for kNN query build various indexes maintaining the shortest distances
for some pairs of vertices on static road networks. Unfortunately, these
methods cannot be used for the time-dependent road networks because
the shortest distances always change over time. To address the prob-
lem of kNN query on time-dependent road networks, we propose a novel
voronoi-based index in this paper. Moreover, we propose an algorithm
for pre-processing time-dependent road networks such that the waiting
time is not necessary to be considered. We confirm the efficiency of our
method through experiments on real-life datasets.

1 Introduction

With the rapid development of mobile devices, k nearest neighbor (kNN) search
on road networks has become more and more important in location-based ser-
vices. Given a query location and a set of objects (e.g., restaurants) on a road
network, it is to find k nearest objects to the query location. kNN search prob-
lem has been well studied on static road networks. However, road networks are
essentially time-dependent but not static in real world. For example, the Vehicle
Information and Communication System (VICS) and the European Traffic Mes-
sage Channel (TMC) are two transportation systems, which provide real-time
traffic information to users. Such road networks are time-dependent, i.e., travel
time for a road varies with taking “rush hour” into account.

The existing works propose various index techniques for answering k nearest
object query on road networks. The main idea behind these indexes is to partition
the vertices into several clusters, and then the clusters are organized as a voronoi
diagram or a tree (e.g., R-tree, G-tree, etc.). All these methods pre-compute and
maintain the shortest distances for some pairs of vertices to facilitate kNN query.
Unfortunately, these indexes cannot be used for time-dependent road networks.

c© Springer International Publishing AG, part of Springer Nature 2018
Y. Cai et al. (Eds.): APWeb-WAIM 2018, LNCS 10988, pp. 334–349, 2018.
https://doi.org/10.1007/978-3-319-96893-3_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96893-3_25&domain=pdf

Finding the K Nearest Objects over Time Dependent Road Networks 335

The reason is that the minimum travel time between two vertices often varies
with time. For example, u and v are in the same cluster for one time period
but they may be in two distinct clusters for another time period because of the
minimum travel time varying with time. Therefore, the existing index techniques
based on the static shortest distance cannot handle the case that the minimum
travel time is time-dependent. Moreover, the waiting time is allowed on time-
dependent road networks, i.e., someone can wait a time period to find another
faster path. When the waiting time is considered, it is more difficult to build an
index for kNN query by existing methods because it is difficult to estimate an
appropriate waiting time for pre-computing the minimum travel time between
two vertices.

Recently, there are some works about kNN query on time-dependent graphs
[4–6,13]. Most of these works utilize A* algorithm to expand the road networks
by estimating an upper or lower bound of travel time. There are two main
drawbacks of these methods. First, in these works, the FIFO (first in first out)
property is required for the networks and the waiting time is not allowed. Second,
the indexes proposed by these works are based on the estimated value of travel
time. However, these indexes cannot facilitate query effectively for large networks
because the deviation are always too large between the estimated and actual
travel time.

In this paper, we study k nearest object query on time dependent road net-
works. A time-dependent road network is modeled as a graph with time infor-
mation. The weight of every edge is a time function wi,j(t) which specifies how
much time it takes to travel through the edge (vi, vj) if departing at time point
t. The main idea of our method is to pre-compute minimum travel time func-
tions (or mtt-function for short) instead of concrete values for some pairs of
vertices and then design a “dynamic” voronoi-based index based on such func-
tions. Here “dynamic” means that in a time-dependent network it can be easily
decided which cluster a vertex should be in for any given time point t. Different
to previous works, our index can facilitate query effectively for large networks.
Moreover, our method does not require the FIFO property for networks and we
allow waiting time on every vertex.

The main contributions of this paper are summarized as below. First, we pro-
pose an algorithm to process wi,j(t) for every edge such that the waiting time
is not necessary to be considered. Let GT and G∗

T be the original graph and the
graph after processing wi,j(t). We can prove that a shortest path with considera-
tion of waiting time on GT is one-one mapped to a shortest path without waiting
time on G∗

T . Furthermore, we show how to compute the mtt-function for two ver-
tices. Second, we propose a novel voronoi-based index for time-dependent road
networks and an algorithm to answer kNN query using our index. Finally, we
confirm the efficiency of our method through extensive experiments on real-life
datasets.

The rest of this paper is organized as follows. Section 2 gives the prob-
lem statement. Section 3 describes how to process wi,j(t) and compute the
mtt-function. Section 4 explains how to build the voronoi-based index for

336 M. Leng et al.

time-dependent networks and Sect. 5 proposes the kNN query algorithm. The
experimental results are presented in Sect. 6. The related work is in Sect. 7.
Finally, we conclude this paper in Sect. 8.

2 Problem Statement

Definition 1 (Time-Dependent Road Network): A time-dependent road
network is a simple directed graph, denoted as GT (V,E,W) (or GT for short),
where V is the set of vertices; E ⊆ V × V is the set of edges; and W is a
set of non-negative value functions. For every edge (vi, vj) ∈ E, there is a time-
function wi,j(t) ∈ W , where t is a time variable. A time function wi,j(t) specifies
how much time it takes to travel from vi to vj, if one departs from vi at time
point t.

In this paper, we assume that wi,j(t) ≥ 0. The assumption is reasonable,
because the travel time cannot be less than zero in real applications. Our work
can be easily extended to handle undirected graphs. An undirected edge (vi, vj)
is equivalent to two directed edges (vi, vj) and (vj , vi), where wi,j(t) = wj,i(t).

The are several works that study how to construct time function wi,j(t),
which is always modeled as a piecewise linear function [7,8,11] and it can be
formalized as follows:

wi,j(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a1t + b1, t0 ≤ t < t1

a2t + b2, t1 ≤ t < t2

· · ·
apt + bp, tp−1 ≤ t ≤ tp

Given a path p, the travel time of p is time-dependent. In order to minimize
the travel time, some waiting time ωi is allowed at every vertex vi in p. That is,
when arriving at vi, one can wait a time period ωi if the travel time of p can be
minimized. We use arrive(vi) and depart(vi) to denote the arrival time at vi and
departure time from vi, respectively. For each vi in p, we have

depart(vi) = arrive(vi) + ωi

Let p = v1 → v2 → · · · → vh be a given path with the departure time t and the
waiting time ωi for each vertex vi, then we have

arrive(v1) = t

arrive(v2) = depart(v1) + w1,2(depart(v1))
· · ·

arrive(vh) = depart(vh−1) + wh−1,h(depart(vh−1))

Thus the travel time of path p is w(p) = arrive(vh) − t. Given two vertices
vi and vj in GT , the minimum travel time from vi to vj with departure time t
is defined as mi,j(t) = min{w(p)|p ∈ Pi,j}, where Pi,j is the set of all the paths

Finding the K Nearest Objects over Time Dependent Road Networks 337

from vi to vj in GT . Obviously, mi,j(t) is also a function related to the departure
time t. We call mi,j(t) the minimum travel time function (or mtt-function
shortly) from vi to vj . Let |V | be n, in the following, we use mi,n+j(t) to represent
mtt-function from a vertex vi to an object oj , in order to distinguish from mi,j(t)
from vi to a vertex vj . Note that an object oi is also a vertex regarded as vn+i

in the network.
Next, we give the definition of kNN query over time-dependent road networks.

Definition 2 (k Nearest Objects on Time-Dependent Road Networks):
Given a time-dependent road network GT (V,E,W), a set of the objects O =
{o1, o2, · · · }, a query point vq ∈ V and a departure time td, k nearest objects
query of vq is to find a k-size subset O(vq) ⊆ O, such that mq,n+j(td) ≥
max{mq,n+i(td)|oi ∈ O(vq)} for every object oj ∈ O \ O(vq).

3 Minimum Travel Time Function

We pre-compute mtt-functions for some pairs of vertices and then build the index
to facilitate kNN query over time-dependent road networks. In this section, we
first describe how to process the time function wi,j(t) for every edge in GT such
that the waiting time is not necessary to be considered when computing mtt-
function and then explain how to compute mtt-function without waiting time.

3.1 Pre-processing Time Function for Every Edge

Given a path p, the waiting time ωi is allowed for any vertex vi ∈ p. However,
it is not easy to find an appropriate value of ωi for every vi ∈ p to minimize
the travel time of p. In this section, we propose an algorithm to convert time
function wi,j(t) to a new function w∗

i,j(t) for every edge (vi, vj) ∈ E. We call
w∗

i,j(t) the “no waiting time function” of edge (vi, vj) (or nwt-function for short).
The waiting time can be considered as zero when nwt-function is used to compute
the minimum travel time of path p. The nwt-function w∗

i,j(t) is defined by the
following equation.

w∗
i,j(t) = min

ωi

(ωi + wi,j(t + ωi)) (1)

The following theorem guarantees the nwt-function w∗
i,j(t) can be used to

compute the minimum travel time for any path p in GT without waiting time.

Theorem 1. Given two time-dependent graphs GT (V,E,W) and G∗
T (V,E,

W ∗), where W ∗ is the set of nwt-functions of all edges in E, for any path p
in GT , the minimum travel time of p in GT with consideration of waiting
time equals to the minimum travel time of p in G∗

T without waiting time.

Proof: Let p = v1 → v2 → · · · → vh be a given path with the depar-
ture time t. ω∗

i is the waiting time on vi (1 ≤ i ≤ h) minimizing the travel
time of p in GT . We have depart(vi) = arrive(vi) + ω∗

i and arrive(vi+1) =
depart(vi) + wi,i+1(depart(vi)). Similarly, we have depart∗(vi) = arrive∗(vi) and

338 M. Leng et al.

Algorithm 1. Nwt-Function (GT (V,E,W))
Input: GT (V, E, W).
Output: W ∗.

1: W ∗ ← ∅;
2: for every wi,j(t) ∈ W do
3: φ ← wi,j(tp), w∗

i,j(tp) ← wi,j(tp);
4: for k = p to 1 do
5: a∗ ← −1, b∗ ← tk + φ;
6: w∗

i,j(t) ← a∗t + b∗ for t ∈ [tk−1, tk);
7: w∗

i,j(t) ← min{w∗
i,j(t), wi,j(t)|t ∈ [tk−1, tk)};

8: φ ← min{w∗
i,j(tk−1), w

−
i,j(tk−1)};

9: W ∗ ← W ∗ ∪ {w∗
i,j(t)};

10: return W ∗

arrive∗(vi+1) = depart∗(vi) + w∗
i,i+1(depart

∗(vi)) for G∗
T . We only need to prove

arrive(vh) = arrive∗(vh). It can be easily proved by induction on vi. We omit it
due to the space limitation. ��

The algorithm to compute nwt-function is shown in Algorithm1. For every
wi,j(t) ∈ W , Algorithm 1 computes w∗

i,j(t) backward from [tp−1, tp] to [t0, t1]
iteratively. In each iteration, w∗

i,j(t) for t ∈ [tk−1, tk) is computed. Algorithm 1
first sets w∗

i,j(t) as a∗t + b∗, where a∗ = −1 and b∗ = tk + φ. φ is the minimum
value between w∗

i,j(tk) and w−
i,j(tk). w−

i,j(tk) is the left limit value of wi,j(t) on
tk. Note that w∗

i,j(tk) and φ have been computed in the last iteration, i.e., the
iteration for computing w∗

i,j(t) on [tk, tk+1). φ is initialized as wi,j(tp). Next,
Algorithm 1 updates w∗

i,j(t) as min{w∗
i,j(t), wi,j(t)} for t ∈ [tk−1, tk) and then φ

is updated as min{w∗
i,j(tk−1), w−

i,j(tk−1)}. The algorithm terminates when w∗
i,j(t)

has been computed for t ∈ [t0, t1).
The time and space complexities analysis for Algorithm 1 are given below.

Let n and m be the number of the vertices and edges in GT respectively. For
every edge (vi, vj), Algorithm 1 needs to compute w∗

i,j(t) on [tk−1, tk) iteratively
from k = p to 1. For every time interval [tk−1, tk), w∗

i,j(t) can be computed in
constant time. Therefore, the time complexity of Algorithm 1 is O(mp). More-
over, Algorithm 1 needs to maintain w∗

i,j(t) and then the space complexity is also
O(mp).

Example 1. We illustrate how to compute w∗
i,j(t) by an example in Fig. 1. As

the solid black line in Fig. 1(a), wi,j(t) is a piecewise linear function:

wi,j(t) =

⎧
⎪⎨

⎪⎩

t + 5, 0 ≤ t < 10
15, 10 ≤ t < 20
−2t + 55, 20 ≤ t ≤ 25

In the first iteration, φ is initialized as wi,j(25) = 5 and then b∗ = 25 + φ = 30.
As the dashed red line in the right-side of Fig. 1(a), we find a∗t+ b∗ = −t+30 is

Finding the K Nearest Objects over Time Dependent Road Networks 339

Fig. 1. Computing w∗
i,j(t) (Color figure online)

always less than wi,j(t) on [20, 25], then w∗
i,j(t) = −t+30 for t ∈ [20, 25] and φ is

updated as 10. Similarly, in the second iteration, w∗
i,j(t) on [10, 20) is computed

as min{15,−t + 30}, i.e., w∗
i,j(t) = 15 for t ∈ [10, 15) and w∗

i,j(t) = −t + 30
for t ∈ [15, 20). Then φ is updated as min{w∗

i,j(10), w−
i,j(10)} = 15. In the final

iteration, as the dashed red line in the left-side of Fig. 1(a), a∗t + b∗ = −t + 25
is always larger than t+5 on [0, 10), we have w∗

i,j(t) = t+5 for t ∈ [0, 10). Then
w∗

i,j(t) is given below and depicted in Fig. 1(b)).

w∗
i,j(t) =

⎧
⎪⎨

⎪⎩

t + 5, 0 ≤ t < 10
15, 10 ≤ t < 15
−t + 30, 15 ≤ t ≤ 25

The following theorem guarantees the correctness of Algorithm 1.

Theorem 2. The w∗
i,j(t) computed by Algorithm1 is exactly the nwt-function

w∗
i,j(t) given by Eq. (1).

Proof: We proved it by induction on p.

Basis. We need to prove that w∗
i,j(t) on time interval [tp−1, tp] can be correctly

computed by Algorithm 1. First, ωi can only be zero when t = tp, then we have
wi,j(tp) = w∗

i,j(tp) and φp = wi,j(tp). Next, we consider the case of t ∈ [tp−1, tp).
By the definition of w∗

i,j(t), we have

w∗
i,j(t) = min

ωi

(ωi + wi,j(t + ωi))

= min
ωi

(ωi + ap(t + ωi) + bp)

= min
ωi

((ap + 1)ωi + apt + bp)

= min
ωi

((ap + 1)ωi + wi,j(t))

For t ∈ [tp−1, tp), if ap ≥ −1, w∗
i,j(t) cannot decrease with ωi increasing. It

means (ap + 1)ωi + wi,j(t) is minimum when ωi = 0 and then w∗
i,j(t) = wi,j(t).

If ap < −1, w∗
i,j(t) will decrease with ωi increasing and thus (ap + 1)ωi + wi,j(t)

340 M. Leng et al.

is minimum when ωi = tp − t, which is the longest waiting time on vi for t ∈
[tp−1, tp). Then we have

w∗
i,j(t) = (ap + 1)(tp − t) + apt + bp = −t + tp + φp

Obviously, wi,j(t) ≤ −t+ tp +φp when ap ≥ −1 and wi,j(t) ≥ −t+ tp +φp when
ap < −1. Then we have w∗

i,j(t) = min{wi,j(t),−t + tp + φp} for t ∈ [tp−1, tp].

Induction. Assume the correct w∗
i,j(t) can be computed by Algorithm 1 for t ∈

[tk, tp], then we need to prove it also can be correctly computed for t ∈ [tk−1, tk).
We consider the following two cases: (1) ωi ≥ tk − t; and (2) ωi < tk − t.

For case (1), the departure time t + ωi ∈ [tk, tp] because ωi ≥ tk − t. By
the assumption, nwt-function w∗

i,j(t) has been correctly computed for t ∈ [tk, tp],
then w∗

i,j(tk) is the minimum travel time for edge (vi, vj) with departure time tk.
Therefore, w∗

i,j(t) for t ∈ [tk−1, tk) can be computed by the following equation:

w∗
i,j(t) = tk − t + w∗

i,j(tk)

For case (2), because ωi < tk − t, then t+ωi ∈ [tk−1, tk). Similar to the proof
of basis, we have

w∗
i,j(t) = min{wi,j(t),−t + tk + w−

i,j(tk)}
Note that, when ak < −1, w∗

i,j(t) = −t + tk + w−
i,j(tk) because wi,j(t) may be

noncontinuous at tk. Therefore, we have

w∗
i,j(t) = min{wi,j(t),−t + tk + w−

i,j(tk),−t + tk + w∗
i,j(tk)}

The proof is completed. ��

3.2 Computing Minimum Travel Time Function

We adopt a Dijkstra-based algorithm proposed in [7] to compute mtt-function
for two vertices vi and vj in GT . This algorithm is only used for the case that the
waiting time is not allowed. After converting wi,j(t) to nwt-function w∗

i,j(t) for
every edge in GT by Algorithm 1, this algorithm can be used for time-dependent
graphs with waiting time.

The main idea of this Dijkstra-based algorithm is to refine a function gi,j(t)
iteratively for every vj ∈ V , where gi,j(t) represents the earliest arrival time on
vj if departing from vi at time point t. In every iteration, algorithm selects a
vertex vx ∈ V and then refine gi,x(t) by extending a time domain Ix to a larger
I ′
x, where Ix = [t0, τx] is a subinterval of the whole time domain T . gi,x(t) is

regarded as well-refined in Ix if it specifies the earliest arrival time at vx from
vi for any departure time t ∈ Ix. The algorithm repeats time-refinement process
till gi,j(t) of destination vj has been well-refined in the whole time domain T
and then mtt-function mi,j(t) can be computed as mi,j(t) = gi,j(t) − t. The
more details about this Dijkstra-based algorithm is given in [7]. As shown in [7],
the time and space complexities are O((n log n + m)α(T)) and O((n + m)α(T))
respectively, where α(T) is the cost required for each function (defined in interval
T) operation.

Finding the K Nearest Objects over Time Dependent Road Networks 341

4 The Novel Voronoi-Based Index

We propose a novel voronoi-based index for kNN query over time-dependent
road networks. In static road networks, the voronoi diagram divides the network
(or space) into a group of disjoint subgraphs (or sub-spaces) where the nearest
object of any vertex inside a subgraph is the object generating this subgraph.
However, in time-dependent road networks, the nearest object of a vertex may be
dynamic. The nearest object of a vertex v may be oi for departure time t ∈ [t1, t2]
but it may be oj for t ∈ [t3, t4]. The main idea of our novel voronoi-based index
is also to divide the vertex set V into some vertex subsets Vi and every subset
Vi is associated with one object oi ∈ O. Different to static road networks, our
voronoi-based index are time-dependent, that is, every vertex v inside a subset
is with a time interval indicating when the object oi is nearest to v. Next, we
describe what is the novel voronoi-based index and how to construct it.

4.1 What Is the Voronoi-Based Index?

Given a vertex v and an object oi, Ii(v) is called v’s maximum time interval
about oi if it satisfies the following two conditions: (1) oi is the nearest object
of v for any departure time t ∈ Ii(v); and (2) there does not exist another
I ′
i(v) ⊃ Ii(v) satisfying the condition (1). Note that Ii(v) may not be a con-

tinuous time interval, that is, if oi is nearest to v for two disjoint departure
time intervals [t1, t2] and [t3, t4], then [t1, t2]∪ [t3, t4] ⊆ Ii(v). The voronoi-based
index maintains a set Ci for every object oi ∈ O, where Ci is a set of the tuples
(v, Ii(v)) for all the vertices v with non-empty Ii(v), i.e.,

Ci = {(v, Ii(v))|v ∈ V ∧ Ii(v) �= ∅}
We call Ci the closest vertex-time pair set of oi. For simplicity, we say v is a
vertex in Ci if (v, Ii(v)) ∈ Ci. Next, we give the definition of the border vertex.

Definition 3 (Border Vertex): A vertex vx in Ci is called a border vertex of
Ci if there exist vy ∈ N+(vx) such that (vy, Iy) /∈ Ci for any Iy ⊇ fx,y(Ii(vx)),
where N+(vx) is the outgoing neighbor set of vx and fx,y(Ii(vx)) is the time
interval mapped from Ii(vx) by the function fx,y(t) = t + w∗

x,y(t).

The border vertex vx of Ci indicates there exist a time point t ∈ fx,y(Ii(vx))
such that oi is not the nearest object of vy if one departs at time point t.

We use Bi to denote the set of all the border vertices of Ci. For every Ci, Di

is the set of mtt-functions mx,n+i(t) for all vertices vx in Ci, that is,

Di = {mx,n+i(t)|vx is a vertex in Ci}
and Mi is a matrix of size |Ci| × |Bi| to maintain mtt-function mx,y(t) for all
pairs of vertex vx and border vertex vy in Ci, i.e.,

Mi = {mx,y(t)|vx ∈ Ci ∧ vy ∈ Bi}
The voronoi-based index is {C,B,D,M}, where C, B, D and M are the collections
of all Ci, Bi, Di and Mi respectively.

342 M. Leng et al.

4.2 How to Construct the Voronoi-Based Index?

We have explained how to compute mtt-function in Sect. 3. Next, we describe
how to compute Ci and Bi for every oi ∈ O.

For every vertex vx ∈ V , Ii(vx) is initialized as the whole time domain T .
We refine Ii(vx) iteratively by removing the sub-intervals on which mx,n+i(t) is
larger than mx,n+j(t) for another object oj . It means oi is not the nearest object
of vx when departure time is in these sub-intervals. For every oj ∈ O (oj �= oi),
let Tj(vx) denote the maximum time interval on which mx,n+j(t) < mx,n+i(t),
Ii(vx) is updated as Ii(vx)−Tj(vx). After removing Tj(vx) for every other object
oj , if Ii(vx) is not empty, then the pair (vx, Ii(vx)) is inserted into Ci.

For every vertex vx in Ci, if there exists an outgoing neighbor vy of vx, such
that vy is not in Ci or fx,y(Ii(vx)) � Ii(vy), then vx must be a border vertex of
Ci and it is inserted into Bi.

Algorithm 2. kNN-Query (G∗
T , vq, td, k)

Input: time-dependent graph G∗
T , query vertex vq, departure time td and k

Output: the k nearest neighbor set O(vq)

1: O(vq) ← ∅, Q ← {Cq}; Eq ← {vq}
2: while |O(vq)| < k do
3: Ci ← Dequeue (Q), O(vq) ← O(vq) ∪ {oi};
4: for each vy ∈ Bi do
5: for each vx ∈ Ei do
6: mq,y ← min{mq,y, mq,x + mx,y(td + mq,x)};
7: for each vz ∈ N+(vy) do
8: if mq,z > mq,y + w∗

y,z(td + mq,y) then
9: mq,z ← mq,y + w∗

y,z(td + mq,y);
10: Let Cj be the set including vz when t = td + mq,z;
11: if Cj /∈ O(vq) then
12: Ej ← Ej ∪ {vz};
13: if mq,n+j > mq,z + mz,n+j(td + mq,z) then
14: mq,n+j ← mq,z + mz,n+j(td + mq,z);
15: if Cj /∈ Q then
16: Enqueue(Q, Cj);
17: else
18: Update(Q, Cj);
19: return O(vq)

5 Query Processing

Algorithm 2 describes how to find the k nearest objects for a query vertex vq

with departure time td. In Algorithm 2, O(vq) is a set to maintain the objects
that have been found so far and Q is a priority queue to maintain a candidate
set of Ci whose oi is possible to be an object in kNN set. All Ci ∈ Q are sorted

Finding the K Nearest Objects over Time Dependent Road Networks 343

in an ascending order by the minimum travel time mq,n+i from vq to oi. The top
Ci in Q is with the minimum mq,n+i and it can be easily done using Fibonacci
Heap. O(vq) and Q are initialized as ∅ and {Cq} respectively, where Cq contains
vq for the departure time td, i.e., (vq, Iq(vq)) ∈ Cq and td ∈ Iq(vq). O(vq) is
expanded iteratively by inserting objects one by one from Q until |O(vq)| = k.
In each iteration, if |O(vq)| < k, Algorithm 2 first dequeues the top Ci from
Q with the minimum mq,n+i. The object oi of Ci must be one of k nearest
objects of vq. It can be guaranteed by Theorem 3. Then oi will be inserted
into O(vq). For every border vertex vy in Ci, Algorithm 2 computes mq,y as
min{mq,x + mx,y(td + mq,x)|vx ∈ Ei}, where Ei is the entry set of Ci. The
“entry” means any path entering into Ci must go through a vertex in Ei. Ei

will be updated when Algorithm2 runs. For every vz ∈ N+(vy), if mq,z >
mq,y + w∗

y,z(td + mq,y), then mq,z will be updated as mq,y + w∗
y,z(td + mq,y).

Next, if vz is in Cj (Cj �= Ci and Cj /∈ O(vq)) at the time point td + mq,z, then
vz will be inserted into Ej as an entry of Cj . For the object oj of Cj , mq,n+j will
be updated as mq,z +mz,n+j(td+mq,z) when mq,n+j > mq,z +mz,n+j(td+mq,z).
If Cj is not in Q, then Cj will be enqueued into Q. Otherwise, Cj has been in
Q and Q will be updated by Cj with new mq,n+j . Algorithm 2 terminates when
the size of O(vq) is k.

Fig. 2. Query processing

Example 2. We use the example in Fig. 2 to illustrate the kNN querying process
for k = 3. In this example, vq is the query vertex and it is in C1 for the departure
time td. Q and O(vq) are initialized as {C1} and ∅ respectively. In the first
iteration, C1 is dequeued from Q and then o1 is inserted into O(vq). Because
v1 is a border vertex of C1 and v3 is an outgoing neighbor of v1, Algorithm 2
computes mq,1(td) and mq,3(td) = mq,1(td) + w∗

1,3(td + mq,1(td)). Note that v3
is in C2 when t = td + mq,3(td) and then it is an entry of C2. Therefore, C2

is enqueued into Q. Similarly, C3 is also enqueued into Q and Q = {C2, C3}.
Assume that o2 is nearer to vq than o3, in the second iteration, C2 is dequeued
and O(vq) is updated as {o1, o2}. In the same way, C4 will be enqueued into Q
in this iteration. In the final iteration, C3 will be dequeued due to o3 is nearer to
vq and then O(vq) = {o1, o2, o3}. Because |O(vq)| = 3, Algorithm 2 terminates
and returns O(vq).

344 M. Leng et al.

The next theorem guarantees the correctness of Algorithm 2.

Theorem 3. In Algorithm2, the object oi of Ci dequeued from Q in the k-th
iteration must be the k-th nearest object of query vertex vq for the departure time
td.

Proof: We prove it by induction on k.

Basis. Obviously, Cq is dequeued from Q in the first iteration. By the definition
of Cq, oq is the nearest object of vq when the departure time is td.

Induction. Assume that the i-th nearest neighbor of vq is dequeued from Q in
the i-th iteration for i < k. We need to prove it also hold for i = k. We prove
it by contradiction. Let Ck be the closest vertex-time pair set dequeued from Q
in the k-th iteration and ok is the object of Ck. Suppose that the k-th nearest
object of vq is ok′ and ok′ �= ok. Let p be the shortest path from vq to ok′ with
the departure time td. Because k > 1, then Ck′ is not Cq and there must exist
an entry ve of Ck′ in p. Let vb be the predecessor of ve in p, then vb must be a
border vertex of Cb at time point td + mq,b and Cb �= Ck′ . There are two cases
for the object ob of Cb: (1) ob is not in the k nearest object set of vq; and (2) ob

is in the k nearest object set of vq.
For case (1), by the definition of Cb, ob is the nearest neighbor of vb at time

point td + mq,b, then we have

mq,b + mb,n+b(td + mq,b) < mq,b + mb,n+k′(td + mq,b)

Thus ob is nearer to vq than ok′ when the departure time is td. It means ob must
be in the k nearest object set of vq, which is a contradiction.

For case (2), Let ob be the i-th (i < k) nearest object of vq, by the inductive
assumption, Cb is dequeued from Q in i-th iteration. According to the Algo-
rithm2, Ck′ is enqueued into Q in this iteration. Therefore, Ck′ will be dequeued
from Q in k-th iteration instead of Ck, which is a contradiction. The proof is
completed ��

The time and space complexities of Algorithm 2 are given below. Let b and
e be the average size of Bi and Ei respectively. In every iteration, Algorithm 2
upadates mq,y as min{mq,y,mq,x + mx,y(td + mq,x)} for every border vertex vy

in Ci. It will cost O(be) time. For every outgoing neighbor vz of border vertex
vy, Algorithm 2 needs to compute mq,z and then it will cost O(bd) time, where
d is the average out-degree of the vertices in GT . Therefore, the time complexity
of Algorithm 2 is O(kb(d + e)). On the other hand, because Algorithm2 needs
to maintain mq,y and mq,z, then the space complexity is O(k(b + e)).

6 Experiements

We compare our voronoi-based index method (marked as VI) with FTTI (Fast-
Travel-Time Index) method [13] and TLNI (Tight-and-Loose-Network Index)
method [6] on the real-life datasets. FTTI and TLNI are the state of the art

Finding the K Nearest Objects over Time Dependent Road Networks 345

index-based methods for kNN query over time-dependent road networks. Note
that FTTI and TLNI are used on G∗

T in which every edge is an nwt-function
w∗

i,j(t) because FTTI and TLNI do not allow the waiting time. Although some
algorithms are proposed in recent works [1,4], they are only to find the nearest
object (i.e., k = 1) and they cannot be used for general kNN query on time-
dependent graphs. All the experiments are conducted on a 2.6 GHz Intel Core
i7 CPU PC with the 16 GB main memory, running on Windows 7.

6.1 DataSets and Experiment Setup

We tested the voronoi-based index method on California road network (CARN)
with 196,5206 vertices and 553,3214 edges. We extracted five time-dependent
graphs with different size using the CARN dataset. The number of vertices
ranges from 100k to 500k. The time domain is set as T = [0, 2000], i.e., the
departure time t can be selected from [0, 2000] for any vertex. Here, 2000 means
2000 time units. For every wi,j(t), we split the time domain T to p subintervals
and assign a linear function randomly for every sub-interval and then wi,j(t) is
a piecewise linear function.

6.2 Experimental Results

Exp-1. Impact of Network Size: In this group of experiments, we study the
impact of time-dependent network size. The number of the vertices increases
from 100k to 500k and the number of objects is fixed at 10k. We investigate the
querying time for k = 7. The number of piecewise intervals of wi,j(t) is set as
4. As shown in Fig. 3(a) and (b), the querying time of our method is always less
than FTTI and TLNI. Specifically, the querying time of TLNI is always much
more than our method even though TLNI has the smallest index size. The reason
is TLNI index only maintain the vertices for an object oi that the upper bound
of travel time to oi are less than the lower bound to the other objects. It cannot
facilitate query effectively in large networks.

Fig. 3. Impact of the network size

346 M. Leng et al.

Fig. 4. Impact of the object set size

Exp-2. Impact of Object Set Size: In this group of experiments, the number
of the vertices is fixed at 100k and the number of objects ranges from 10k to
50k. As shown in Fig. 4(a) and (b), the querying time of our method are always
less than FTTI and TLNI. Moreover, the querying time and index size decrease
with the increasing of the object set size. There are two reasons as follows: (1)
the average size of Ci and Bi decrease if the object set size increases; (2) the
increasing of object size results in that the objects become nearer to vq and then
querying time decreases.

Exp-3. Impact of the Time Domain: In Fig. 5, we study the impact of time
domain. In this group of experiments, the number of vertices and objects are
fixed at 100k and 10k respectively. The time domain ranges from [0, 1000] to
[0, 3000]. We investigate the querying time for k = 7. As shown in Fig. 5(a) and
(b), the querying time and index size of our method are not affected by the
expanding of time domain. However, for FTTI and TLNI, the querying time
increases with the the expanding of time domain. It is because they need to
maintain the estimated value about travel time in index to facilitate kNN query.
If the time domain becomes larger, the deviation between the estimation and
actual travel time will become larger too. It cannot facilitate query effectively.

Fig. 5. Impact of the length of time interval

Finding the K Nearest Objects over Time Dependent Road Networks 347

Fig. 6. Impact of the number of piecewise interval of time function

Exp-4. Impact of the Number of Piecewise Intervals: In Fig. 6, we inves-
tigate the impact of the number of piecewise intervals of wi,j(t). In this group
of experiments, the number of piecewise intervals of wi,j(t) increases from 2 to
10. The number of the vertices and objects are fixed at 100k and 10k, respec-
tively. As shown in Fig. 6(a) and (b), the querying time and index size always
increase with the increasing of the number of piecewise intervals. The reason is
that the more piecewise intervals of wi,j(t) results in more piecewise intervals of
mtt-function and then the more border vertices will be maintained in the index.

Exp-5. Impact of k: In Fig. 7, we study the querying time by varying k from 1
to 10 on two different networks with 10k vertices and 50k vertices respectively.
In this group of experiments, the number of objects are fixed at 10k and 50k for
two different networks respectively. As shown in Fig. 7(a) and (b), the querying
time always increases marginally with the increasing of k for our index method.

7 Related Work

kNN query has been well-studied on static road networks. Most of the existing
works propose various index techniques. The main ideas of these methods are to
partition the vertices into several clusters, and then the clusters are organized as
a voronoi diagram or a tree (e.g., R-tree) [9,10,12,14–16,18–20]. These methods
pre-compute and maintain the shortest distances for some pairs of vertices to
facilitate kNN query. Unfortunately, these index techniques cannot be used for
the time-dependent road networks because the minimum travel time between
two vertices always varies with time.

kNN query has also been studied on time-dependent road networks [1,3–
6,13]. Most of these works are based on A* algorithm. The authors in [1,4] study
the problem to find nearest (i.e., k = 1) object on time-dependent networks.
In [4], A virtual node v is inserted into the graph G with the zero-cost edges
connecting to all the objects. The nearest object can be found on the shortest
path from the query vertex to v. The authors in [2] study problem of finding
k POIs that minimize the aggregated travel time from a set of query points.

348 M. Leng et al.

Fig. 7. Impact of k

The index-based methods are proposed in [6,13]. In [6], A* algorithm is utilized
to expand the road networks by estimating an upper or lower bound of travel
time. An index is built to facilitate kNN query using these estimated bounds.
In [13], time domain is divided to several sub-intervals. For every sub-interval,
C nearest objects of every vertex are found by an estimation of minimum travel
time. There are two main drawbacks of these methods. First, in these works, the
FIFO (first in first out) property is required for networks and waiting time is not
allowed. Second, the indexes proposed by these works are based on the estimated
value of travel time. However, these indexes cannot facilitate query effectively
for the large networks because the deviations are always too large between the
estimated and actual travel time.

Recently, there are some works about the shortest path query between two
given vertices over time-dependent graphs [7,17]. However, these works does not
study any index that can be used in kNN query over time-dependent road net-
works. The method in [7] is used to compute mtt-function between two vertices
in our paper.

8 Conclusion

In this paper, we study the problem of k nearest objects query on time-dependent
road networks. We first give an algorithm for processing time-dependent road
networks such that the waiting time is not necessary to be considered and then
propose a novel voronoi-based index to facilitate kNN query. We explain how
to construct the index and complete the querying process using our index. We
confirm the efficiency of our method through extensive experiments on real-life
datasets.

Acknowledgments. This work is supported by the grant of the National Natural
Science Foundation of China No. 61402323, 61572353 and the Australian Research
Council Discovery Grant DP130103051.

Finding the K Nearest Objects over Time Dependent Road Networks 349

References

1. Chucre, M.R.R.B., do Nascimento, S.M., de Macêdo, J.A.F., Monteiro, J.M.,
Casanova, M.A.: Taxi, please! A nearest neighbor query in time-dependent road
networks. In: MDM, pp. 180–185 (2016)

2. Costa, C.F., Machado, J.C., Nascimento, M.A., de Macêdo, J.A.F.: Aggregate k-
nearest neighbors queries in time-dependent road networks. In: SIGSPATIAL, pp.
3–12 (2015)

3. Costa, C.F., Nascimento, M.A., de Macêdo, J.A.F., Machado, J.C.: A*-based solu-
tions for KNN queries with operating time constraints in time-dependent road
networks. In: MDM, pp. 23–32 (2014)

4. Cruz, L.A., Lettich, F., Júnior, L.S., Magalhães, R.P., de Macêdo, J.A.F.: Finding
the nearest service provider on time-dependent road networks. In: ECML-PKDD,
pp. 21–31 (2017)

5. Cruz, L.A., Nascimento, M.A., de Macêdo, J.A.F.: K-nearest neighbors queries in
time-dependent road networks. JIDM 3(3), 211–226 (2012)

6. Demiryurek, U., Kashani, F.B., Shahabi, C.: Efficient k-nearest neighbor search in
time-dependent spatial networks. In: DEXA, pp. 432–449 (2010)

7. Ding, B., Yu, J.X., Qin, L.: Finding time-dependent shortest paths over large
graphs. In: EDBT, pp. 205–216 (2008)

8. George, B., Shekhar, S.: Time-aggregated graphs for modeling spatio-temporal
networks. J. Data Semant. 11, 191–212 (2006)

9. Hu, H., Lee, D.L., Xu, J.: Fast nearest neighbor search on road networks. In:
EDBT, pp. 186–203 (2006)

10. Huang, X., Jensen, C.S., Saltenis, S.: The islands approach to nearest neighbor
querying in spatial networks. In: SSTD, pp. 73–90 (2005)

11. Kanoulas, E., Du, Y., Xia, T., Zhang, D.: Finding fastest paths on a road network
with speed patterns. In: ICDE, p. 10 (2006)

12. Kolahdouzan, M.R., Shahabi, C.: Voronoi-based K nearest neighbor search for
spatial network databases. In: VLDB, pp. 840–851 (2004)

13. Komai, Y., Nguyen, D.H., Hara, T., Nishio, S.: kNN search utilizing index of the
minimum road travel time in time-dependent road networks. In: SRDS, pp. 131–
137 (2014)

14. Lee, K.C.K., Lee, W., Zheng, B.: Fast object search on road networks. In: EDBT,
pp. 1018–1029 (2009)

15. Wei-Kleiner, F.: Finding nearest neighbors in road networks: a tree decomposition
method. In: EDBT, pp. 233–240 (2013)

16. Yang, S., Cheema, M.A., Lin, X., Zhang, Y., Zhang, W.: Reverse k nearest neigh-
bors queries and spatial reverse top-k queries. VLDB J. 26(2), 151–176 (2017)

17. Yang, Y., Gao, H., Yu, J.X., Li, J.: Finding the cost-optimal path with time con-
straint over time-dependent graphs. Proc. VLDB Endow. 7, 673–684 (2014)

18. Zheng, Y., Guo, Q., Tung, A.K.H., Wu, S.: Lazylsh: approximate nearest neighbor
search for multiple distance functions with a single index. In: SIGMOD, pp. 2023–
2037 (2016)

19. Zhong, R., Li, G., Tan, K., Zhou, L.: G-tree: an efficient index for KNN search on
road networks. In: CIKM, pp. 39–48 (2013)

20. Zhu, H., Yang, X., Wang, B., Lee, W.: Range-based obstructed nearest neighbor
queries. In: SIGMOD, pp. 2053–2068 (2016)

	Finding the K Nearest Objects over Time Dependent Road Networks
	1 Introduction
	2 Problem Statement
	3 Minimum Travel Time Function
	3.1 Pre-processing Time Function for Every Edge
	3.2 Computing Minimum Travel Time Function

	4 The Novel Voronoi-Based Index
	4.1 What Is the Voronoi-Based Index?
	4.2 How to Construct the Voronoi-Based Index?

	5 Query Processing
	6 Experiements
	6.1 DataSets and Experiment Setup
	6.2 Experimental Results

	7 Related Work
	8 Conclusion
	References

