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Context-Free Languages

regular languages 正则语言

finite automata: DFA / NFA

regular expressions

some simple languages, such as {0n1n | n ≥ 0}, are not regular languages.

context-free languages 上下文无关语言

pushdown automata 下推自动机

first used in the study of human languages

in the specification and compilation of programming languages

parser
the construction of a parser from a context-free grammar
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Context-Free Grammars
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Pushdown Automata

Pushdown Automata 下推自动机

Pushdown Automata (PDA): we introduce a new type of computational

model.

like NFA but have an extra component called a stack.

the stack provides additional memory beyond the finite amount

available in the control.

the stack allows PDA to recognize some nonregular languages.

PDA are equivalent in power to CFG

two options for proving that a language is context free

give either a CFG generating it (generator)

or a PDA recognizing it (recognizer)

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 6 / 56



Pushdown Automata

Pushdown Automata 下推自动机

Pushdown Automata (PDA): we introduce a new type of computational

model.

like NFA but have an extra component called a stack.

the stack provides additional memory beyond the finite amount

available in the control.

the stack allows PDA to recognize some nonregular languages.

PDA are equivalent in power to CFG

two options for proving that a language is context free

give either a CFG generating it (generator)

or a PDA recognizing it (recognizer)

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 6 / 56



Pushdown Automata

Pushdown Automata 下推自动机

Pushdown Automata (PDA): we introduce a new type of computational

model.

like NFA but have an extra component called a stack.

the stack provides additional memory beyond the finite amount

available in the control.

the stack allows PDA to recognize some nonregular languages.

PDA are equivalent in power to CFG

two options for proving that a language is context free

give either a CFG generating it (generator)

or a PDA recognizing it (recognizer)

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 6 / 56



Pushdown Automata

Pushdown Automata 下推自动机

DFA/NFA vs. PDA

Schematic of DFA/NFA

Schematic of PDA
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Pushdown Automata

Pushdown Automata 下推自动机

PDA can write symbols on the stack and read them back later.

Writing a symbol “pushes down” all the other symbols on the stack.

all access to the stack may be done only at the top: “last in, first out”

pushing : writing a symbol on the top of the stack

popping : removing a symbol on the top of the stack

A stack can hold an unlimited amount of information.

the language {0n1n | n ≥ 0}

a DFA/NFA is unable to recognize it.

A PDA is able to recognize it.
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Pushdown Automata

Pushdown Automata 下推自动机

Deterministic and nondeterministic PDA are not equivalent in power.

Nondeterministic PDA recognize certain languages that no

deterministic PDA can recognize.

Recall that DFA and NFA do recognize the same class of languages.

So the pushdown automata situation is different.

We focus on nondeterministic PDA because these automata are

equivalent in power to CFG.
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Pushdown Automata Formal Definition of a Pushdown Automaton

Formal Definition of a Pushdown Automaton

Definition (PDA (下推自动机))

A pushdown automaton (PDA) is a 6-tuple (Q,Σ,Γ, δ, q0, F ), where

1 Q is a finite set of states,

2 Σ is a finite set called the input alphabet,

3 Γ is a finite set called the stack alphabet,

4 δ : Q× Σε × Γε → P(Q× Γε) is the transition function,

5 q0 ∈ Q is the start state, and

6 F ⊆ Q is the set of accept states.
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Pushdown Automata Formal Definition of a Pushdown Automaton

Formal Definition of Computation for a PDA

A PDA M = (Q,Σ,Γ, δ, q0, F ) computes as follows.

It accepts input w if w can be written as w = w1w2 · · ·wm, where
wi ∈ Σε and

sequences of states r0, r1, . . . , rm ∈ Q and strings s0, s1, . . . , sm ∈ Γ∗

exist that satisfy the following three conditions.

The strings si represent the sequence of stack contents that M has
on the accepting branch of the computation.

1 r0 = q0 and s0 = ε

2 For i = 0, . . . ,m− 1, we have (ri+1, b) ∈ δ(ri, wi+1, a), where si = at

and si+1 = bt for some a, b ∈ Γε and t ∈ Γ∗

3 rm ∈ F

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 11 / 56



Pushdown Automata Formal Definition of a Pushdown Automaton

Formal Definition of Computation for a PDA

A PDA M = (Q,Σ,Γ, δ, q0, F ) computes as follows.

It accepts input w if w can be written as w = w1w2 · · ·wm, where
wi ∈ Σε and

sequences of states r0, r1, . . . , rm ∈ Q and strings s0, s1, . . . , sm ∈ Γ∗

exist that satisfy the following three conditions.

The strings si represent the sequence of stack contents that M has
on the accepting branch of the computation.

1 r0 = q0 and s0 = ε

2 For i = 0, . . . ,m− 1, we have (ri+1, b) ∈ δ(ri, wi+1, a), where si = at

and si+1 = bt for some a, b ∈ Γε and t ∈ Γ∗

3 rm ∈ F

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 11 / 56



Pushdown Automata Formal Definition of a Pushdown Automaton

Formal Definition of Computation for a PDA

A PDA M = (Q,Σ,Γ, δ, q0, F ) computes as follows.

It accepts input w if w can be written as w = w1w2 · · ·wm, where
wi ∈ Σε and

sequences of states r0, r1, . . . , rm ∈ Q and strings s0, s1, . . . , sm ∈ Γ∗

exist that satisfy the following three conditions.

The strings si represent the sequence of stack contents that M has
on the accepting branch of the computation.

1 r0 = q0 and s0 = ε

2 For i = 0, . . . ,m− 1, we have (ri+1, b) ∈ δ(ri, wi+1, a), where si = at

and si+1 = bt for some a, b ∈ Γε and t ∈ Γ∗

3 rm ∈ F

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 11 / 56



Pushdown Automata Formal Definition of a Pushdown Automaton

Formal Definition of Computation for a PDA

A PDA M = (Q,Σ,Γ, δ, q0, F ) computes as follows.

It accepts input w if w can be written as w = w1w2 · · ·wm, where
wi ∈ Σε and

sequences of states r0, r1, . . . , rm ∈ Q and strings s0, s1, . . . , sm ∈ Γ∗

exist that satisfy the following three conditions.

The strings si represent the sequence of stack contents that M has
on the accepting branch of the computation.

1 r0 = q0 and s0 = ε

2 For i = 0, . . . ,m− 1, we have (ri+1, b) ∈ δ(ri, wi+1, a), where si = at

and si+1 = bt for some a, b ∈ Γε and t ∈ Γ∗

3 rm ∈ F

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 11 / 56



Pushdown Automata Formal Definition of a Pushdown Automaton

Formal Definition of Computation for a PDA

A PDA M = (Q,Σ,Γ, δ, q0, F ) computes as follows.

It accepts input w if w can be written as w = w1w2 · · ·wm, where
wi ∈ Σε and

sequences of states r0, r1, . . . , rm ∈ Q and strings s0, s1, . . . , sm ∈ Γ∗

exist that satisfy the following three conditions.

The strings si represent the sequence of stack contents that M has
on the accepting branch of the computation.

1 r0 = q0 and s0 = ε

2 For i = 0, . . . ,m− 1, we have (ri+1, b) ∈ δ(ri, wi+1, a), where si = at

and si+1 = bt for some a, b ∈ Γε and t ∈ Γ∗

3 rm ∈ F

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 11 / 56



Pushdown Automata Formal Definition of a Pushdown Automaton

Formal Definition of Computation for a PDA

A PDA M = (Q,Σ,Γ, δ, q0, F ) computes as follows.

It accepts input w if w can be written as w = w1w2 · · ·wm, where
wi ∈ Σε and

sequences of states r0, r1, . . . , rm ∈ Q and strings s0, s1, . . . , sm ∈ Γ∗

exist that satisfy the following three conditions.

The strings si represent the sequence of stack contents that M has
on the accepting branch of the computation.

1 r0 = q0 and s0 = ε

2 For i = 0, . . . ,m− 1, we have (ri+1, b) ∈ δ(ri, wi+1, a), where si = at

and si+1 = bt for some a, b ∈ Γε and t ∈ Γ∗

3 rm ∈ F

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 11 / 56



Pushdown Automata Examples of Pushdown Automata

Examples of Pushdown Automata

Example (PDA M1 recognizes the language {0n1n | n ≥ 0})
Let M1 be (Q,Σ,Γ, δ, q1, F ), where

Q = {q1, q2, q3, q4}
Σ = {0, 1}
Γ = {0, $}
F = {q1, q4}, and
δ is given by the following table, wherein blank entries signify ∅
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Pushdown Automata Examples of Pushdown Automata

Examples of Pushdown Automata

Example (PDA M2)

A pushdown automaton that recognizes the language

{aibjck | i, j, k ≥ 0 and i = j or i = k}

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 14 / 56



Pushdown Automata Examples of Pushdown Automata

Examples of Pushdown Automata

Example (PDA M2)

A pushdown automaton that recognizes the language

{aibjck | i, j, k ≥ 0 and i = j or i = k}

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 14 / 56



Pushdown Automata Examples of Pushdown Automata

Examples of Pushdown Automata

Example (PDA M3)

A pushdown automaton that recognizes the language

{wwR | w ∈ {0, 1}∗}
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Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Theorem
A language is context free if and only if some pushdown automaton

recognizes it.

Lemma
If a language is context free, then some pushdown automaton recognizes it.

Lemma
If a pushdown automaton recognizes some language, then it is context free.
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Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a language is context free, then some pushdown automaton recognizes it.

Proof idea:

Let A be a CFL generated by a CFG G. We convert G into an

equivalent PDA P .

P accepts a input w, if G generates w by a sequence of derivations.

PDA P begins by writing the start variable on its stack. It goes

through a series of intermediate strings. Eventually it may arrive at a

string that contains only terminal symbols. Then P accepts if this

string is identical to the string it has received as input.
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Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a language is context free, then some pushdown automaton recognizes it.

The following is an informal description of P.
1 Place the marker symbol $ and the start variable on the stack.
2 Repeat the following steps forever.

1 If the top of stack is a variable symbol A, nondeterministically select

one of the rules for A and substitute A by the string on the right-hand

side of the rule.
2 If the top of stack is a terminal symbol a, read the next symbol from

the input and compare it to a. If they match, repeat. If they do not

match, reject on this branch of the nondeterminism.
3 If the top of stack is the symbol $, enter the accept state. Doing so

accepts the input if it has all been read.
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Equivalence With Context-Free Grammars

Lemma
If a language is context free, then some pushdown automaton recognizes it.

Proof.
Construct a pushdown automation P = (Q,Σ,Γ, qstart, F ). We use a

shorthand that provides a way to write an entire string on the stack in

one step of the machine.

Let q and r be states of the PDA and let a be in Σε and s be in Γε.

P goes from q to r when it reads a and pops s.

Push the entire string u = u1, · · · , ul on the stack at the same time.
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Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a language is context free, then some pushdown automaton recognizes it.

Proof.
Implement this action by introducing new states q1, · · · , ql−1 and

setting the transition function as follows:

δ(q, a, s) to contain (q1, ul),

δ(q1, ε, ε) = {(q2, ul−1)},
δ(q2, ε, ε) = {(q3, ul−2)},

· · · ,
δ(ql−1, ε, ε) = {(r, u1)},
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Equivalence With Context-Free Grammars

Lemma
If a language is context free, then some pushdown automaton recognizes it.

Proof.
We use the notation (r, u) ∈ δ(q, a, s) to mean that when q is the

state of the automaton, a is the next input symbol, and s is the

symbol on the top of the stack, the PDA may read the a and pop the

s, then push the string u onto the stack and go on to the state r.

The states of P are Q = {qstart, qloop, qaccept} ∪ E, E is s the set of

states we need for implementing the shorthand just described.
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Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a language is context free, then some pushdown automaton recognizes it.

Proof.
The stack is initialized to contain $ and S, implementing step 1 in the

informal description:

δ(qstart, ε, ε) = {(qloop, S$)}.
Main loop of step 2:

δ(qloop, ε, A) = {(qloop,w)|where A→ w is a rule in R}, the top of the

stack contains a variable.

δ(qloop, a, a) = {(qloop, ε)}, the top of the stack contains a terminal.

δ(qloop, ε, $) = {(qaccept, ε)}, the empty stack marker $ is on the top of

the stack.
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Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a language is context free, then some pushdown automaton recognizes it.

Proof.
The state diagram is shown in the following figure

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 23 / 56



Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a language is context free, then some pushdown automaton recognizes it.

Proof.
The state diagram is shown in the following figure

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 23 / 56



Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Example (construct a PDA P from the following CFG G.)

S → aTb|b, T → Ta|ε

The transition function is shown in the following diagram
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Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Proof idea:

Given a PDA P , make a CFG G generating all the strings that P

accepts.

P accepts a input w, if G generates w by a sequence of derivations.

Design a grammar that does somewhat more. For each pair of states

p and q in P , the grammar will have a variable Apq. This variable

generates all the strings that can take P from p with an empty stack

to q with an empty stack.
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Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Proof idea:

We simplify our task by modifying P slightly to give it the following
three features:

It has a single accept state, qaccept.

It empties its stack before accepting.

Each transition either pushes a symbol onto the stack (a push move) or

pops one off the stack (a pop move), but it does not do both at the

same time.
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Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Proof idea:

Giving P features 1 and 2 is easy.

To give it feature 3,

we replace each transition that simultaneously pops and pushes with a

two transition sequence that goes through a new state;

we replace each transition that neither pops nor pushes with a two

transition sequence that pushes then pops an arbitrary stack symbol.
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Equivalence With Context-Free Grammars

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Proof idea:

Two possibilities occur during P ’s computation on x. Either the
symbol popped at the end is the symbol that was pushed at the
beginning, or not.

Simulate the former possibility with the rule Apq → aArsb;

We simulate the latter possibility with the rule Apq → AprArq.
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Equivalence With Context-Free Grammars

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Proof.
Given P = (Q,Σ,Γ, δ, q0, {qaccept}), construct G. The variables of G are

{Apq|p, q ∈ Q}. The start variable is Aq0,qaccept . We describe G’s rules in

three parts.

For each p, q, r, s ∈ Q, u ∈ Γ, and a, b ∈ Σε, if δp, a, ε contains (r, u)

and δ(s, b, u) contains (q, ε) put the rule Apq → aArsb in G.

For each p, q, r ∈ Q, put the rule Apq → AprArq in G.

Finally, for each p ∈ Q, put the rule App → ε in G.
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Equivalence With Context-Free Grammars

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Proof.
PDA computation corresponding to the rule Apq → AprArq
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Equivalence With Context-Free Grammars

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Claim
If Apq generates x, then x can bring P from p with empty stack to q with

empty stack.

Claim
If x can bring P from p with empty stack to q with empty stack, Apq
generates x.
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Equivalence With Context-Free Grammars

Claim
If Apq generates x, then x can bring P from p with empty stack to q with

empty stack.

Proof.
We prove this claim by induction on the number of steps in the derivation

of x from Apq.

Basis: The derivation has 1 step. A derivation with a single step must

use a rule whose right-hand side contains no variables. The only rules

in G where no variables occur on the right-hand side are App → ε.
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Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Proof.
Induction step: Assume true for derivations of length at most k, where

k ≥ 1, and prove true for derivations of length k + 1. Suppose Apq
∗⇒ x

with k + 1 steps. The first step in this derivation is either Apq ⇒ aArsb or

Apq ⇒ AprArq. We handle these two cases separately.

In the first case, consider the portion y of x that Ars generates, x = ayb.

Ars
∗⇒ y with k steps, then P can go from r on empty stack to s on

empty stack.

Because Apq → aArsb is a rule in G, δ(p, a, ε) contains (r, u) and

δ(s, b, u) contains (q, ε), for some stack symbol u.

x can bring it from p with empty stack to q with empty stack.
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Equivalence With Context-Free Grammars

Claim
If Apq generates x, then x can bring P from p with empty stack to q with

empty stack.

Proof.
In the second case, consider the portions y and z of x that Apr and Arq
respectively generate, x = yz.

Apr
∗⇒ y in at most k steps and Arq

∗⇒ z in at most k steps.

y can bring P from p to r, and z can bring P from r to q, with

empty stacks at the beginning and end.

x can bring it from p with empty stack to q with empty stack.

This completes the induction step.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 35 / 56



Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Claim
If Apq generates x, then x can bring P from p with empty stack to q with

empty stack.

Proof.
In the second case, consider the portions y and z of x that Apr and Arq
respectively generate, x = yz.

Apr
∗⇒ y in at most k steps and Arq

∗⇒ z in at most k steps.

y can bring P from p to r, and z can bring P from r to q, with

empty stacks at the beginning and end.

x can bring it from p with empty stack to q with empty stack.

This completes the induction step.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 35 / 56



Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Claim
If Apq generates x, then x can bring P from p with empty stack to q with

empty stack.

Proof.
In the second case, consider the portions y and z of x that Apr and Arq
respectively generate, x = yz.

Apr
∗⇒ y in at most k steps and Arq

∗⇒ z in at most k steps.

y can bring P from p to r, and z can bring P from r to q, with

empty stacks at the beginning and end.

x can bring it from p with empty stack to q with empty stack.

This completes the induction step.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 35 / 56



Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Claim
If Apq generates x, then x can bring P from p with empty stack to q with

empty stack.

Proof.
In the second case, consider the portions y and z of x that Apr and Arq
respectively generate, x = yz.

Apr
∗⇒ y in at most k steps and Arq

∗⇒ z in at most k steps.

y can bring P from p to r, and z can bring P from r to q, with

empty stacks at the beginning and end.

x can bring it from p with empty stack to q with empty stack.

This completes the induction step.
Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 35 / 56



Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Claim
If x can bring P from p with empty stack to q with empty stack, Apq
generates x.

Proof.
We prove this claim by induction on the number of steps in the

computation of P that goes from p to q with empty stacks on input x.

Basis: The computation has 0 steps.

If a computation has 0 steps, it starts and ends at the same p. We show

that App
∗⇒ x. In 0 steps, P cannot read any characters, so x = ε. By

construction, G has the rule App → ε, so the basis is proved.
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Equivalence With Context-Free Grammars

Claim
If x can bring P from p with empty stack to q with empty stack, Apq
generates x.

Proof.
Induction step: Assume true for computations of length at most k, where

k ≥ 0, and prove true for computations of length k + 1.

Suppose that P has a computation wherein x brings p to q with empty

stacks in k + 1 steps. Either the stack is empty only at the beginning and

end of this computation, or it becomes empty elsewhere, too.
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Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Proof.
In the first case,

The symbol that is pushed at the first move must be the same as the

symbol that is popped at the last move, called it u.

δ(p, a, ε) contains (r, u) and δ(s, b, u) contains (q, ε), and so rule

Apq → aArsb is in G.

Consider x = ayb, P can go from r with an empty stack to s with an

empty stack on input y, the computation on y has

(k + 1)− 2 = k − 1 steps.

Ars
∗⇒ y and hence Apq

∗⇒ x
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Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Proof.
In the second case,

let r be a state where the stack becomes empty other than at the

beginning or end of the computation on x.

The portions of the computation from p to r and from r to q each

contain at most k steps.

y is the input read during the first portion and z is the input read

during the second portion.

We have Apr
∗⇒ y and Arq

∗⇒ z. Because Apq → AprArq in G, then

Apq
∗⇒ x.

Proof is complete.
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Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Corollary
Every regular language is context free.
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Non-Context-Free Languages The Pumping Lemma for Context-Free Languages

The Pumping Lemma for Context-Free Languages

Theorem (Pumping lemma for context-free languages 泵引理)

If A is a context-free language, then there is a number p (the pumping

length) where, if s is any string in A of length at least p, then s may be

divided into five pieces, s = uvxyz, satisfying the conditions:

1 for each i ≥ 0, uvixyiz ∈ A,

2 |vy| > 0, and

3 |vxy| ≤ p.
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Non-Context-Free Languages The Pumping Lemma for Context-Free Languages

The Pumping Lemma for Context-Free Languages

Proof idea: Let A be a CFL and let G be a CFG that generates it. We

must show that any sufficiently long string s in A can be pumped and

remain in A.

Let s be a very long string in A, it is derivable from G and has a

parse tree. The parse tree must contain a long path from the root to

one of a leaf.

On this long path, some variable symbol R must repeat because of

the pigeonhole principle.

Replace the subtree under the second occurrence of R with the

subtree under the first occurrence of R and still get a legal parse tree.
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Non-Context-Free Languages The Pumping Lemma for Context-Free Languages

The Pumping Lemma for Context-Free Languages

Example (Surgery on parse trees)
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Non-Context-Free Languages The Pumping Lemma for Context-Free Languages

The Pumping Lemma for Context-Free Languages

Proof.
Let G be a CFG for CFL A. Let b be the maximum number of symbols in

the right-hand side of a rule.

A node can have no more than b children. It means at most bh leaves

are within h steps of the start variable (the root of the parse tree).

If the height of the parse tree is at most h, the length of the string

generated is at most bh.

Let V denote the number of variables in G, we set p, the pumping

length, to be b|V |+1.
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Non-Context-Free Languages The Pumping Lemma for Context-Free Languages

The Pumping Lemma for Context-Free Languages

Proof.
To see how to pump any such string s

let τ be one of its parse trees. If s has several parse trees, choose τ to

be a parse tree that has the smallest number of nodes.

τ must be at least |V |+ 1 high, so its longest path from the root to a

leaf has length at least |V |+ 1.

The path has at least |V |+ 2 nodes and hence this path has at least

|V |+ 1 variables.
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Non-Context-Free Languages The Pumping Lemma for Context-Free Languages

The Pumping Lemma for Context-Free Languages

Proof.
With G having only |V | variables, some variable R appears more than

once on that path.

we select R to be a variable that repeats among the lowest |V |+ 1

variables on this path.

The path has at least |V |+ 2 nodes and hence this path has at least

|V |+ 1 variables.
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Non-Context-Free Languages The Pumping Lemma for Context-Free Languages

The Pumping Lemma for Context-Free Languages

Proof.
We divide s into uvxyz according the Figure.

Each occurrence of R has a subtree under it, generating a part of the

string s.

The upper occurrence of R has a larger subtree and generates vxy,

whereas the lower occurrence generates just x with a smaller subtree.

We substitute one for the other and still obtain a valid parse tree.

That establishes condition 1 of the lemma
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Non-Context-Free Languages The Pumping Lemma for Context-Free Languages

The Pumping Lemma for Context-Free Languages

Proof.
For condition 2, we must be sure that v and y are not both ε.

If they were, the parse tree obtained by substituting the smaller

subtree for the larger would have fewer nodes than τ does and would

still generate s.

This result isn’t possible because we had already chosen τ to be a

parse tree for s with the smallest number of nodes.
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Non-Context-Free Languages The Pumping Lemma for Context-Free Languages

The Pumping Lemma for Context-Free Languages

Proof.
For condition 3, we need to be sure that vxy has length at most p.

In the parse tree for s the upper occurrence of R generates vxy.

We chose R such that both occurrences fall within the bottom |V |+ 1

variables on the path and chose the longest path in the parse tree.

The subtree where R generates vxy is at most |V |+ 1 high.

A tree of this height can generate a string of length at most

b|V |+1 = p.
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Non-Context-Free Languages The Pumping Lemma for Context-Free Languages

The Pumping Lemma for Context-Free Languages

Example

Use the pumping lemma to show that the language B = {anbncn|n ≥ 0}
is not context free.

Example

Let C = {aibjck|0 ≤ i ≤ j ≤ k}. We use the pumping lemma to show

that C is not a CFL.

Example

Let D = {ww|w ∈ {0, 1}∗}. Use the pumping lemma to show that D is

not a CFL.
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Deterministic Context-Free Languages

Deterministic Context-Free Languages

The languages that are recognizable by deterministic pushdown

automata (DPDAs) are called deterministic context-free languages

(DCFLs).

Basic principle of determinism: at each step of its computation, the

DPDA has at most one way to proceed according to its transition

function.

ε-moves is allowed in the DPDA’s transition function.

ε-input moves corresponding to δ(q, ε, x);

ε-stack moves corresponding to δ(q, a, ε);

If a DPDA can make an ε-move in a certain situation, it is prohibited

from making a move in that same situation that involves processing a

symbol instead of ε.
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Deterministic Context-Free Languages

Deterministic Context-Free Languages

Definition (DPDA (确定型下推自动机))

A deterministic pushdown automaton (DPDA) is a 6-tuple

(Q,Σ,Γ, δ, q0, F ), where

1 Q is a finite set of states,

2 Σ is a finite set called the input alphabet,

3 Γ is a finite set called the stack alphabet,

4 δ : Q× Σε × Γε → (Q× Γε) ∪ {∅} is the transition function,

5 q0 ∈ Q is the start state, and

6 F ⊆ Q is the set of accept states.
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Deterministic Context-Free Languages

Definition (DPDA (确定型下推自动机))

A deterministic pushdown automaton (DPDA) is a 6-tuple

(Q,Σ,Γ, δ, q0, F ), where

The transition function δ must satisfy the following condition:

For every q ∈ Q, a ∈ Σ and x ∈ Γ, exactly one of the values

δ(q, a, x),

δ(q, a, ε),

δ(q, ε, x),

δ(q, ε, ε)

is not ∅.
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Deterministic Context-Free Languages

Deterministic Context-Free Languages

Theorem
The class of DCFLs is closed under complementation.

This theorem implies that some CFLs are not DCFLs. Any CFL whose

complement isn’t a CFL isn’t a DCFL.

Example

A = {aibjck|i 6= j or j 6= k where i, j, k ≥ 0} is a CFL but not a DCFL.
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