
2 Context-Free Languages
(Part 2 of 2)

Yajun Yang

yjyang@tju.edu.cn

School of Computer Science and Technology

Tianjin University

2016
图形标志
Seal

天津大学大学图形标志是天津大学 VIS 的重要组成部分，既是形象的外在展示，也

是自我身份的内在认同，更体现了天津大学的办学理念和特色、承载文化精神并映

射文化内涵。

天津大学标志形象基本元素由图形标志和字体标志两部分组成，其中图形标志是

其核心元素。图形标志核心图形为盾形，源自天津大学建校初期（北洋大学）图形

标志，为西方大学图形标志的传统样式，体现了当时“西学为用”的指导思想，也

反映出天津大学的悠久历史和尊贵感。盾形中篆书“北洋”，笔画凝炼劲挺，圆健

美观，表现了天津大学源远流长的历史。“1895”为天津大学创建年份。图形标志

外沿齿状修饰边象征天津大学是一所以工为主 , 理、工、文、管相结合的综合性大学。

英文校名和毛体中文校名沿圆弧排列。图形标志色彩为“北洋蓝”，是天津大学校色，

蓝色代表理性、沉稳、效率、科技。

A1.1.1 A1.1 图形标志 Seal

A1.1.1 图形标志 Seal

Outline

1 Context-Free Grammars

2 Pushdown Automata

3 Non-Context-Free Languages

4 Deterministic Context-Free Languages

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 2 / 56

Context-Free Languages

regular languages 正则语言

finite automata: DFA / NFA

regular expressions

some simple languages, such as {0n1n | n ≥ 0}, are not regular languages.

context-free languages 上下文无关语言

pushdown automata 下推自动机

first used in the study of human languages

in the specification and compilation of programming languages

parser
the construction of a parser from a context-free grammar

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 3 / 56

Context-Free Languages

regular languages 正则语言

finite automata: DFA / NFA

regular expressions

some simple languages, such as {0n1n | n ≥ 0}, are not regular languages.

context-free languages 上下文无关语言

pushdown automata 下推自动机

first used in the study of human languages

in the specification and compilation of programming languages

parser
the construction of a parser from a context-free grammar

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 3 / 56

Context-Free Grammars

Outline

1 Context-Free Grammars

Formal Definition of a Context-Free Grammar

Examples of a Context-Free Grammar

Designing Context-Free Grammars

Ambiguity

Chomsky Normal Form

2 Pushdown Automata

3 Non-Context-Free Languages

4 Deterministic Context-Free Languages
Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 4 / 56

Pushdown Automata

Outline

1 Context-Free Grammars

2 Pushdown Automata

Formal Definition of a Pushdown Automaton

Examples of Pushdown Automata

Equivalence With Context-Free Grammars

3 Non-Context-Free Languages

4 Deterministic Context-Free Languages

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 5 / 56

Pushdown Automata

Pushdown Automata 下推自动机

Pushdown Automata (PDA): we introduce a new type of computational

model.

like NFA but have an extra component called a stack.

the stack provides additional memory beyond the finite amount

available in the control.

the stack allows PDA to recognize some nonregular languages.

PDA are equivalent in power to CFG

two options for proving that a language is context free

give either a CFG generating it (generator)

or a PDA recognizing it (recognizer)

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 6 / 56

Pushdown Automata

Pushdown Automata 下推自动机

Pushdown Automata (PDA): we introduce a new type of computational

model.

like NFA but have an extra component called a stack.

the stack provides additional memory beyond the finite amount

available in the control.

the stack allows PDA to recognize some nonregular languages.

PDA are equivalent in power to CFG

two options for proving that a language is context free

give either a CFG generating it (generator)

or a PDA recognizing it (recognizer)

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 6 / 56

Pushdown Automata

Pushdown Automata 下推自动机

Pushdown Automata (PDA): we introduce a new type of computational

model.

like NFA but have an extra component called a stack.

the stack provides additional memory beyond the finite amount

available in the control.

the stack allows PDA to recognize some nonregular languages.

PDA are equivalent in power to CFG

two options for proving that a language is context free

give either a CFG generating it (generator)

or a PDA recognizing it (recognizer)

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 6 / 56

Pushdown Automata

Pushdown Automata 下推自动机

DFA/NFA vs. PDA

Schematic of DFA/NFA

Schematic of PDA

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 7 / 56

Pushdown Automata

Pushdown Automata 下推自动机

DFA/NFA vs. PDA

Schematic of DFA/NFA Schematic of PDA

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 7 / 56

Pushdown Automata

Pushdown Automata 下推自动机

PDA can write symbols on the stack and read them back later.

Writing a symbol “pushes down” all the other symbols on the stack.

all access to the stack may be done only at the top: “last in, first out”

pushing : writing a symbol on the top of the stack

popping : removing a symbol on the top of the stack

A stack can hold an unlimited amount of information.

the language {0n1n | n ≥ 0}

a DFA/NFA is unable to recognize it.

A PDA is able to recognize it.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 8 / 56

Pushdown Automata

Pushdown Automata 下推自动机

Deterministic and nondeterministic PDA are not equivalent in power.

Nondeterministic PDA recognize certain languages that no

deterministic PDA can recognize.

Recall that DFA and NFA do recognize the same class of languages.

So the pushdown automata situation is different.

We focus on nondeterministic PDA because these automata are

equivalent in power to CFG.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 9 / 56

Pushdown Automata Formal Definition of a Pushdown Automaton

Formal Definition of a Pushdown Automaton

Definition (PDA (下推自动机))

A pushdown automaton (PDA) is a 6-tuple (Q,Σ,Γ, δ, q0, F), where

1 Q is a finite set of states,

2 Σ is a finite set called the input alphabet,

3 Γ is a finite set called the stack alphabet,

4 δ : Q× Σε × Γε → P(Q× Γε) is the transition function,

5 q0 ∈ Q is the start state, and

6 F ⊆ Q is the set of accept states.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 10 / 56

Pushdown Automata Formal Definition of a Pushdown Automaton

Formal Definition of a Pushdown Automaton

Definition (PDA (下推自动机))

A pushdown automaton (PDA) is a 6-tuple (Q,Σ,Γ, δ, q0, F), where

1 Q is a finite set of states,

2 Σ is a finite set called the input alphabet,

3 Γ is a finite set called the stack alphabet,

4 δ : Q× Σε × Γε → P(Q× Γε) is the transition function,

5 q0 ∈ Q is the start state, and

6 F ⊆ Q is the set of accept states.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 10 / 56

Pushdown Automata Formal Definition of a Pushdown Automaton

Formal Definition of a Pushdown Automaton

Definition (PDA (下推自动机))

A pushdown automaton (PDA) is a 6-tuple (Q,Σ,Γ, δ, q0, F), where

1 Q is a finite set of states,

2 Σ is a finite set called the input alphabet,

3 Γ is a finite set called the stack alphabet,

4 δ : Q× Σε × Γε → P(Q× Γε) is the transition function,

5 q0 ∈ Q is the start state, and

6 F ⊆ Q is the set of accept states.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 10 / 56

Pushdown Automata Formal Definition of a Pushdown Automaton

Formal Definition of a Pushdown Automaton

Definition (PDA (下推自动机))

A pushdown automaton (PDA) is a 6-tuple (Q,Σ,Γ, δ, q0, F), where

1 Q is a finite set of states,

2 Σ is a finite set called the input alphabet,

3 Γ is a finite set called the stack alphabet,

4 δ : Q× Σε × Γε → P(Q× Γε) is the transition function,

5 q0 ∈ Q is the start state, and

6 F ⊆ Q is the set of accept states.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 10 / 56

Pushdown Automata Formal Definition of a Pushdown Automaton

Formal Definition of a Pushdown Automaton

Definition (PDA (下推自动机))

A pushdown automaton (PDA) is a 6-tuple (Q,Σ,Γ, δ, q0, F), where

1 Q is a finite set of states,

2 Σ is a finite set called the input alphabet,

3 Γ is a finite set called the stack alphabet,

4 δ : Q× Σε × Γε → P(Q× Γε) is the transition function,

5 q0 ∈ Q is the start state, and

6 F ⊆ Q is the set of accept states.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 10 / 56

Pushdown Automata Formal Definition of a Pushdown Automaton

Formal Definition of a Pushdown Automaton

Definition (PDA (下推自动机))

A pushdown automaton (PDA) is a 6-tuple (Q,Σ,Γ, δ, q0, F), where

1 Q is a finite set of states,

2 Σ is a finite set called the input alphabet,

3 Γ is a finite set called the stack alphabet,

4 δ : Q× Σε × Γε → P(Q× Γε) is the transition function,

5 q0 ∈ Q is the start state, and

6 F ⊆ Q is the set of accept states.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 10 / 56

Pushdown Automata Formal Definition of a Pushdown Automaton

Formal Definition of a Pushdown Automaton

Definition (PDA (下推自动机))

A pushdown automaton (PDA) is a 6-tuple (Q,Σ,Γ, δ, q0, F), where

1 Q is a finite set of states,

2 Σ is a finite set called the input alphabet,

3 Γ is a finite set called the stack alphabet,

4 δ : Q× Σε × Γε → P(Q× Γε) is the transition function,

5 q0 ∈ Q is the start state, and

6 F ⊆ Q is the set of accept states.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 10 / 56

Pushdown Automata Formal Definition of a Pushdown Automaton

Formal Definition of a Pushdown Automaton

Definition (PDA (下推自动机))

A pushdown automaton (PDA) is a 6-tuple (Q,Σ,Γ, δ, q0, F), where

1 Q is a finite set of states,

2 Σ is a finite set called the input alphabet,

3 Γ is a finite set called the stack alphabet,

4 δ : Q× Σε × Γε → P(Q× Γε) is the transition function,

5 q0 ∈ Q is the start state, and

6 F ⊆ Q is the set of accept states.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 10 / 56

Pushdown Automata Formal Definition of a Pushdown Automaton

Formal Definition of Computation for a PDA

A PDA M = (Q,Σ,Γ, δ, q0, F) computes as follows.

It accepts input w if w can be written as w = w1w2 · · ·wm, where
wi ∈ Σε and

sequences of states r0, r1, . . . , rm ∈ Q and strings s0, s1, . . . , sm ∈ Γ∗

exist that satisfy the following three conditions.

The strings si represent the sequence of stack contents that M has
on the accepting branch of the computation.

1 r0 = q0 and s0 = ε

2 For i = 0, . . . ,m− 1, we have (ri+1, b) ∈ δ(ri, wi+1, a), where si = at

and si+1 = bt for some a, b ∈ Γε and t ∈ Γ∗

3 rm ∈ F

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 11 / 56

Pushdown Automata Formal Definition of a Pushdown Automaton

Formal Definition of Computation for a PDA

A PDA M = (Q,Σ,Γ, δ, q0, F) computes as follows.

It accepts input w if w can be written as w = w1w2 · · ·wm, where
wi ∈ Σε and

sequences of states r0, r1, . . . , rm ∈ Q and strings s0, s1, . . . , sm ∈ Γ∗

exist that satisfy the following three conditions.

The strings si represent the sequence of stack contents that M has
on the accepting branch of the computation.

1 r0 = q0 and s0 = ε

2 For i = 0, . . . ,m− 1, we have (ri+1, b) ∈ δ(ri, wi+1, a), where si = at

and si+1 = bt for some a, b ∈ Γε and t ∈ Γ∗

3 rm ∈ F

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 11 / 56

Pushdown Automata Formal Definition of a Pushdown Automaton

Formal Definition of Computation for a PDA

A PDA M = (Q,Σ,Γ, δ, q0, F) computes as follows.

It accepts input w if w can be written as w = w1w2 · · ·wm, where
wi ∈ Σε and

sequences of states r0, r1, . . . , rm ∈ Q and strings s0, s1, . . . , sm ∈ Γ∗

exist that satisfy the following three conditions.

The strings si represent the sequence of stack contents that M has
on the accepting branch of the computation.

1 r0 = q0 and s0 = ε

2 For i = 0, . . . ,m− 1, we have (ri+1, b) ∈ δ(ri, wi+1, a), where si = at

and si+1 = bt for some a, b ∈ Γε and t ∈ Γ∗

3 rm ∈ F

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 11 / 56

Pushdown Automata Formal Definition of a Pushdown Automaton

Formal Definition of Computation for a PDA

A PDA M = (Q,Σ,Γ, δ, q0, F) computes as follows.

It accepts input w if w can be written as w = w1w2 · · ·wm, where
wi ∈ Σε and

sequences of states r0, r1, . . . , rm ∈ Q and strings s0, s1, . . . , sm ∈ Γ∗

exist that satisfy the following three conditions.

The strings si represent the sequence of stack contents that M has
on the accepting branch of the computation.

1 r0 = q0 and s0 = ε

2 For i = 0, . . . ,m− 1, we have (ri+1, b) ∈ δ(ri, wi+1, a), where si = at

and si+1 = bt for some a, b ∈ Γε and t ∈ Γ∗

3 rm ∈ F

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 11 / 56

Pushdown Automata Formal Definition of a Pushdown Automaton

Formal Definition of Computation for a PDA

A PDA M = (Q,Σ,Γ, δ, q0, F) computes as follows.

It accepts input w if w can be written as w = w1w2 · · ·wm, where
wi ∈ Σε and

sequences of states r0, r1, . . . , rm ∈ Q and strings s0, s1, . . . , sm ∈ Γ∗

exist that satisfy the following three conditions.

The strings si represent the sequence of stack contents that M has
on the accepting branch of the computation.

1 r0 = q0 and s0 = ε

2 For i = 0, . . . ,m− 1, we have (ri+1, b) ∈ δ(ri, wi+1, a), where si = at

and si+1 = bt for some a, b ∈ Γε and t ∈ Γ∗

3 rm ∈ F

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 11 / 56

Pushdown Automata Formal Definition of a Pushdown Automaton

Formal Definition of Computation for a PDA

A PDA M = (Q,Σ,Γ, δ, q0, F) computes as follows.

It accepts input w if w can be written as w = w1w2 · · ·wm, where
wi ∈ Σε and

sequences of states r0, r1, . . . , rm ∈ Q and strings s0, s1, . . . , sm ∈ Γ∗

exist that satisfy the following three conditions.

The strings si represent the sequence of stack contents that M has
on the accepting branch of the computation.

1 r0 = q0 and s0 = ε

2 For i = 0, . . . ,m− 1, we have (ri+1, b) ∈ δ(ri, wi+1, a), where si = at

and si+1 = bt for some a, b ∈ Γε and t ∈ Γ∗

3 rm ∈ F

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 11 / 56

Pushdown Automata Examples of Pushdown Automata

Examples of Pushdown Automata

Example (PDA M1 recognizes the language {0n1n | n ≥ 0})
Let M1 be (Q,Σ,Γ, δ, q1, F), where

Q = {q1, q2, q3, q4}
Σ = {0, 1}
Γ = {0, $}
F = {q1, q4}, and
δ is given by the following table, wherein blank entries signify ∅

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 12 / 56

Pushdown Automata Examples of Pushdown Automata

Examples of Pushdown Automata

Example (PDA M1 recognizes the language {0n1n | n ≥ 0})
Let M1 be (Q,Σ,Γ, δ, q1, F), where

Q = {q1, q2, q3, q4}
Σ = {0, 1}
Γ = {0, $}
F = {q1, q4}, and
δ is given by the following table, wherein blank entries signify ∅

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 12 / 56

Pushdown Automata Examples of Pushdown Automata

Examples of Pushdown Automata

Example (PDA M1 recognizes the language {0n1n | n ≥ 0})
Let M1 be (Q,Σ,Γ, δ, q1, F), where

Q = {q1, q2, q3, q4}
Σ = {0, 1} Γ = {0, $} F = {q1, q4}, and
State diagram for the PDA M1

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 13 / 56

Pushdown Automata Examples of Pushdown Automata

Examples of Pushdown Automata

Example (PDA M1 recognizes the language {0n1n | n ≥ 0})
Let M1 be (Q,Σ,Γ, δ, q1, F), where

Q = {q1, q2, q3, q4}
Σ = {0, 1} Γ = {0, $} F = {q1, q4}, and
State diagram for the PDA M1

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 13 / 56

Pushdown Automata Examples of Pushdown Automata

Examples of Pushdown Automata

Example (PDA M2)

A pushdown automaton that recognizes the language

{aibjck | i, j, k ≥ 0 and i = j or i = k}

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 14 / 56

Pushdown Automata Examples of Pushdown Automata

Examples of Pushdown Automata

Example (PDA M2)

A pushdown automaton that recognizes the language

{aibjck | i, j, k ≥ 0 and i = j or i = k}

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 14 / 56

Pushdown Automata Examples of Pushdown Automata

Examples of Pushdown Automata

Example (PDA M3)

A pushdown automaton that recognizes the language

{wwR | w ∈ {0, 1}∗}

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 15 / 56

Pushdown Automata Examples of Pushdown Automata

Examples of Pushdown Automata

Example (PDA M3)

A pushdown automaton that recognizes the language

{wwR | w ∈ {0, 1}∗}

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 15 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Theorem
A language is context free if and only if some pushdown automaton

recognizes it.

Lemma
If a language is context free, then some pushdown automaton recognizes it.

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 16 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Theorem
A language is context free if and only if some pushdown automaton

recognizes it.

Lemma
If a language is context free, then some pushdown automaton recognizes it.

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 16 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Theorem
A language is context free if and only if some pushdown automaton

recognizes it.

Lemma
If a language is context free, then some pushdown automaton recognizes it.

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 16 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a language is context free, then some pushdown automaton recognizes it.

Proof idea:

Let A be a CFL generated by a CFG G. We convert G into an

equivalent PDA P .

P accepts a input w, if G generates w by a sequence of derivations.

PDA P begins by writing the start variable on its stack. It goes

through a series of intermediate strings. Eventually it may arrive at a

string that contains only terminal symbols. Then P accepts if this

string is identical to the string it has received as input.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 17 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a language is context free, then some pushdown automaton recognizes it.

Proof idea:

Let A be a CFL generated by a CFG G. We convert G into an

equivalent PDA P .

P accepts a input w, if G generates w by a sequence of derivations.

PDA P begins by writing the start variable on its stack. It goes

through a series of intermediate strings. Eventually it may arrive at a

string that contains only terminal symbols. Then P accepts if this

string is identical to the string it has received as input.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 17 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a language is context free, then some pushdown automaton recognizes it.

Proof idea:

Let A be a CFL generated by a CFG G. We convert G into an

equivalent PDA P .

P accepts a input w, if G generates w by a sequence of derivations.

PDA P begins by writing the start variable on its stack. It goes

through a series of intermediate strings. Eventually it may arrive at a

string that contains only terminal symbols. Then P accepts if this

string is identical to the string it has received as input.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 17 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a language is context free, then some pushdown automaton recognizes it.

Proof idea:

Let A be a CFL generated by a CFG G. We convert G into an

equivalent PDA P .

P accepts a input w, if G generates w by a sequence of derivations.

PDA P begins by writing the start variable on its stack. It goes

through a series of intermediate strings. Eventually it may arrive at a

string that contains only terminal symbols. Then P accepts if this

string is identical to the string it has received as input.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 17 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a language is context free, then some pushdown automaton recognizes it.

Proof idea:

Let A be a CFL generated by a CFG G. We convert G into an

equivalent PDA P .

P accepts a input w, if G generates w by a sequence of derivations.

PDA P begins by writing the start variable on its stack. It goes

through a series of intermediate strings. Eventually it may arrive at a

string that contains only terminal symbols. Then P accepts if this

string is identical to the string it has received as input.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 17 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a language is context free, then some pushdown automaton recognizes it.

The following is an informal description of P.
1 Place the marker symbol $ and the start variable on the stack.
2 Repeat the following steps forever.

1 If the top of stack is a variable symbol A, nondeterministically select

one of the rules for A and substitute A by the string on the right-hand

side of the rule.
2 If the top of stack is a terminal symbol a, read the next symbol from

the input and compare it to a. If they match, repeat. If they do not

match, reject on this branch of the nondeterminism.
3 If the top of stack is the symbol $, enter the accept state. Doing so

accepts the input if it has all been read.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 18 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a language is context free, then some pushdown automaton recognizes it.

The following is an informal description of P.

1 Place the marker symbol $ and the start variable on the stack.
2 Repeat the following steps forever.

1 If the top of stack is a variable symbol A, nondeterministically select

one of the rules for A and substitute A by the string on the right-hand

side of the rule.
2 If the top of stack is a terminal symbol a, read the next symbol from

the input and compare it to a. If they match, repeat. If they do not

match, reject on this branch of the nondeterminism.
3 If the top of stack is the symbol $, enter the accept state. Doing so

accepts the input if it has all been read.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 18 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a language is context free, then some pushdown automaton recognizes it.

The following is an informal description of P.
1 Place the marker symbol $ and the start variable on the stack.

2 Repeat the following steps forever.
1 If the top of stack is a variable symbol A, nondeterministically select

one of the rules for A and substitute A by the string on the right-hand

side of the rule.
2 If the top of stack is a terminal symbol a, read the next symbol from

the input and compare it to a. If they match, repeat. If they do not

match, reject on this branch of the nondeterminism.
3 If the top of stack is the symbol $, enter the accept state. Doing so

accepts the input if it has all been read.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 18 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a language is context free, then some pushdown automaton recognizes it.

The following is an informal description of P.
1 Place the marker symbol $ and the start variable on the stack.
2 Repeat the following steps forever.

1 If the top of stack is a variable symbol A, nondeterministically select

one of the rules for A and substitute A by the string on the right-hand

side of the rule.
2 If the top of stack is a terminal symbol a, read the next symbol from

the input and compare it to a. If they match, repeat. If they do not

match, reject on this branch of the nondeterminism.
3 If the top of stack is the symbol $, enter the accept state. Doing so

accepts the input if it has all been read.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 18 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a language is context free, then some pushdown automaton recognizes it.

The following is an informal description of P.
1 Place the marker symbol $ and the start variable on the stack.
2 Repeat the following steps forever.

1 If the top of stack is a variable symbol A, nondeterministically select

one of the rules for A and substitute A by the string on the right-hand

side of the rule.

2 If the top of stack is a terminal symbol a, read the next symbol from

the input and compare it to a. If they match, repeat. If they do not

match, reject on this branch of the nondeterminism.
3 If the top of stack is the symbol $, enter the accept state. Doing so

accepts the input if it has all been read.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 18 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a language is context free, then some pushdown automaton recognizes it.

The following is an informal description of P.
1 Place the marker symbol $ and the start variable on the stack.
2 Repeat the following steps forever.

1 If the top of stack is a variable symbol A, nondeterministically select

one of the rules for A and substitute A by the string on the right-hand

side of the rule.
2 If the top of stack is a terminal symbol a, read the next symbol from

the input and compare it to a. If they match, repeat. If they do not

match, reject on this branch of the nondeterminism.

3 If the top of stack is the symbol $, enter the accept state. Doing so

accepts the input if it has all been read.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 18 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a language is context free, then some pushdown automaton recognizes it.

The following is an informal description of P.
1 Place the marker symbol $ and the start variable on the stack.
2 Repeat the following steps forever.

1 If the top of stack is a variable symbol A, nondeterministically select

one of the rules for A and substitute A by the string on the right-hand

side of the rule.
2 If the top of stack is a terminal symbol a, read the next symbol from

the input and compare it to a. If they match, repeat. If they do not

match, reject on this branch of the nondeterminism.
3 If the top of stack is the symbol $, enter the accept state. Doing so

accepts the input if it has all been read.
Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 18 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a language is context free, then some pushdown automaton recognizes it.

Proof.
Construct a pushdown automation P = (Q,Σ,Γ, qstart, F). We use a

shorthand that provides a way to write an entire string on the stack in

one step of the machine.

Let q and r be states of the PDA and let a be in Σε and s be in Γε.

P goes from q to r when it reads a and pops s.

Push the entire string u = u1, · · · , ul on the stack at the same time.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 19 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a language is context free, then some pushdown automaton recognizes it.

Proof.
Construct a pushdown automation P = (Q,Σ,Γ, qstart, F). We use a

shorthand that provides a way to write an entire string on the stack in

one step of the machine.

Let q and r be states of the PDA and let a be in Σε and s be in Γε.

P goes from q to r when it reads a and pops s.

Push the entire string u = u1, · · · , ul on the stack at the same time.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 19 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a language is context free, then some pushdown automaton recognizes it.

Proof.
Construct a pushdown automation P = (Q,Σ,Γ, qstart, F). We use a

shorthand that provides a way to write an entire string on the stack in

one step of the machine.

Let q and r be states of the PDA and let a be in Σε and s be in Γε.

P goes from q to r when it reads a and pops s.

Push the entire string u = u1, · · · , ul on the stack at the same time.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 19 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a language is context free, then some pushdown automaton recognizes it.

Proof.
Construct a pushdown automation P = (Q,Σ,Γ, qstart, F). We use a

shorthand that provides a way to write an entire string on the stack in

one step of the machine.

Let q and r be states of the PDA and let a be in Σε and s be in Γε.

P goes from q to r when it reads a and pops s.

Push the entire string u = u1, · · · , ul on the stack at the same time.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 19 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a language is context free, then some pushdown automaton recognizes it.

Proof.
Implement this action by introducing new states q1, · · · , ql−1 and

setting the transition function as follows:

δ(q, a, s) to contain (q1, ul),

δ(q1, ε, ε) = {(q2, ul−1)},
δ(q2, ε, ε) = {(q3, ul−2)},

· · · ,
δ(ql−1, ε, ε) = {(r, u1)},

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 20 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a language is context free, then some pushdown automaton recognizes it.

Proof.
Implement this action by introducing new states q1, · · · , ql−1 and

setting the transition function as follows:

δ(q, a, s) to contain (q1, ul),

δ(q1, ε, ε) = {(q2, ul−1)},
δ(q2, ε, ε) = {(q3, ul−2)},

· · · ,
δ(ql−1, ε, ε) = {(r, u1)},

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 20 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a language is context free, then some pushdown automaton recognizes it.

Proof.
Implement this action by introducing new states q1, · · · , ql−1 and

setting the transition function as follows:

δ(q, a, s) to contain (q1, ul),

δ(q1, ε, ε) = {(q2, ul−1)},
δ(q2, ε, ε) = {(q3, ul−2)},

· · · ,
δ(ql−1, ε, ε) = {(r, u1)},

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 20 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a language is context free, then some pushdown automaton recognizes it.

Proof.
Implement this action by introducing new states q1, · · · , ql−1 and

setting the transition function as follows:

δ(q, a, s) to contain (q1, ul),

δ(q1, ε, ε) = {(q2, ul−1)},

δ(q2, ε, ε) = {(q3, ul−2)},
· · · ,

δ(ql−1, ε, ε) = {(r, u1)},

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 20 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a language is context free, then some pushdown automaton recognizes it.

Proof.
Implement this action by introducing new states q1, · · · , ql−1 and

setting the transition function as follows:

δ(q, a, s) to contain (q1, ul),

δ(q1, ε, ε) = {(q2, ul−1)},
δ(q2, ε, ε) = {(q3, ul−2)},

· · · ,
δ(ql−1, ε, ε) = {(r, u1)},

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 20 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a language is context free, then some pushdown automaton recognizes it.

Proof.
Implement this action by introducing new states q1, · · · , ql−1 and

setting the transition function as follows:

δ(q, a, s) to contain (q1, ul),

δ(q1, ε, ε) = {(q2, ul−1)},
δ(q2, ε, ε) = {(q3, ul−2)},

· · · ,
δ(ql−1, ε, ε) = {(r, u1)},

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 20 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a language is context free, then some pushdown automaton recognizes it.

Proof.
Implement this action by introducing new states q1, · · · , ql−1 and

setting the transition function as follows:

δ(q, a, s) to contain (q1, ul),

δ(q1, ε, ε) = {(q2, ul−1)},
δ(q2, ε, ε) = {(q3, ul−2)},

· · · ,
δ(ql−1, ε, ε) = {(r, u1)},

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 20 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a language is context free, then some pushdown automaton recognizes it.

Proof.
We use the notation (r, u) ∈ δ(q, a, s) to mean that when q is the

state of the automaton, a is the next input symbol, and s is the

symbol on the top of the stack, the PDA may read the a and pop the

s, then push the string u onto the stack and go on to the state r.

The states of P are Q = {qstart, qloop, qaccept} ∪ E, E is s the set of

states we need for implementing the shorthand just described.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 21 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a language is context free, then some pushdown automaton recognizes it.

Proof.
We use the notation (r, u) ∈ δ(q, a, s) to mean that when q is the

state of the automaton, a is the next input symbol, and s is the

symbol on the top of the stack, the PDA may read the a and pop the

s, then push the string u onto the stack and go on to the state r.

The states of P are Q = {qstart, qloop, qaccept} ∪ E, E is s the set of

states we need for implementing the shorthand just described.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 21 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a language is context free, then some pushdown automaton recognizes it.

Proof.
We use the notation (r, u) ∈ δ(q, a, s) to mean that when q is the

state of the automaton, a is the next input symbol, and s is the

symbol on the top of the stack, the PDA may read the a and pop the

s, then push the string u onto the stack and go on to the state r.

The states of P are Q = {qstart, qloop, qaccept} ∪ E, E is s the set of

states we need for implementing the shorthand just described.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 21 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a language is context free, then some pushdown automaton recognizes it.

Proof.
The stack is initialized to contain $ and S, implementing step 1 in the

informal description:

δ(qstart, ε, ε) = {(qloop, S$)}.
Main loop of step 2:

δ(qloop, ε, A) = {(qloop,w)|where A→ w is a rule in R}, the top of the

stack contains a variable.

δ(qloop, a, a) = {(qloop, ε)}, the top of the stack contains a terminal.

δ(qloop, ε, $) = {(qaccept, ε)}, the empty stack marker $ is on the top of

the stack.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 22 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a language is context free, then some pushdown automaton recognizes it.

Proof.
The stack is initialized to contain $ and S, implementing step 1 in the

informal description:

δ(qstart, ε, ε) = {(qloop, S$)}.
Main loop of step 2:

δ(qloop, ε, A) = {(qloop,w)|where A→ w is a rule in R}, the top of the

stack contains a variable.

δ(qloop, a, a) = {(qloop, ε)}, the top of the stack contains a terminal.

δ(qloop, ε, $) = {(qaccept, ε)}, the empty stack marker $ is on the top of

the stack.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 22 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a language is context free, then some pushdown automaton recognizes it.

Proof.
The stack is initialized to contain $ and S, implementing step 1 in the

informal description:

δ(qstart, ε, ε) = {(qloop, S$)}.

Main loop of step 2:

δ(qloop, ε, A) = {(qloop,w)|where A→ w is a rule in R}, the top of the

stack contains a variable.

δ(qloop, a, a) = {(qloop, ε)}, the top of the stack contains a terminal.

δ(qloop, ε, $) = {(qaccept, ε)}, the empty stack marker $ is on the top of

the stack.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 22 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a language is context free, then some pushdown automaton recognizes it.

Proof.
The stack is initialized to contain $ and S, implementing step 1 in the

informal description:

δ(qstart, ε, ε) = {(qloop, S$)}.
Main loop of step 2:

δ(qloop, ε, A) = {(qloop,w)|where A→ w is a rule in R}, the top of the

stack contains a variable.

δ(qloop, a, a) = {(qloop, ε)}, the top of the stack contains a terminal.

δ(qloop, ε, $) = {(qaccept, ε)}, the empty stack marker $ is on the top of

the stack.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 22 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a language is context free, then some pushdown automaton recognizes it.

Proof.
The stack is initialized to contain $ and S, implementing step 1 in the

informal description:

δ(qstart, ε, ε) = {(qloop, S$)}.
Main loop of step 2:

δ(qloop, ε, A) = {(qloop,w)|where A→ w is a rule in R}, the top of the

stack contains a variable.

δ(qloop, a, a) = {(qloop, ε)}, the top of the stack contains a terminal.

δ(qloop, ε, $) = {(qaccept, ε)}, the empty stack marker $ is on the top of

the stack.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 22 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a language is context free, then some pushdown automaton recognizes it.

Proof.
The stack is initialized to contain $ and S, implementing step 1 in the

informal description:

δ(qstart, ε, ε) = {(qloop, S$)}.
Main loop of step 2:

δ(qloop, ε, A) = {(qloop,w)|where A→ w is a rule in R}, the top of the

stack contains a variable.

δ(qloop, a, a) = {(qloop, ε)}, the top of the stack contains a terminal.

δ(qloop, ε, $) = {(qaccept, ε)}, the empty stack marker $ is on the top of

the stack.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 22 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a language is context free, then some pushdown automaton recognizes it.

Proof.
The stack is initialized to contain $ and S, implementing step 1 in the

informal description:

δ(qstart, ε, ε) = {(qloop, S$)}.
Main loop of step 2:

δ(qloop, ε, A) = {(qloop,w)|where A→ w is a rule in R}, the top of the

stack contains a variable.

δ(qloop, a, a) = {(qloop, ε)}, the top of the stack contains a terminal.

δ(qloop, ε, $) = {(qaccept, ε)}, the empty stack marker $ is on the top of

the stack.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 22 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a language is context free, then some pushdown automaton recognizes it.

Proof.
The state diagram is shown in the following figure

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 23 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a language is context free, then some pushdown automaton recognizes it.

Proof.
The state diagram is shown in the following figure

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 23 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Example (construct a PDA P from the following CFG G.)

S → aTb|b, T → Ta|ε

The transition function is shown in the following diagram

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 24 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Example (construct a PDA P from the following CFG G.)

S → aTb|b, T → Ta|ε
The transition function is shown in the following diagram

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 24 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Proof idea:

Given a PDA P , make a CFG G generating all the strings that P

accepts.

P accepts a input w, if G generates w by a sequence of derivations.

Design a grammar that does somewhat more. For each pair of states

p and q in P , the grammar will have a variable Apq. This variable

generates all the strings that can take P from p with an empty stack

to q with an empty stack.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 25 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Proof idea:

Given a PDA P , make a CFG G generating all the strings that P

accepts.

P accepts a input w, if G generates w by a sequence of derivations.

Design a grammar that does somewhat more. For each pair of states

p and q in P , the grammar will have a variable Apq. This variable

generates all the strings that can take P from p with an empty stack

to q with an empty stack.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 25 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Proof idea:

Given a PDA P , make a CFG G generating all the strings that P

accepts.

P accepts a input w, if G generates w by a sequence of derivations.

Design a grammar that does somewhat more. For each pair of states

p and q in P , the grammar will have a variable Apq. This variable

generates all the strings that can take P from p with an empty stack

to q with an empty stack.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 25 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Proof idea:

Given a PDA P , make a CFG G generating all the strings that P

accepts.

P accepts a input w, if G generates w by a sequence of derivations.

Design a grammar that does somewhat more. For each pair of states

p and q in P , the grammar will have a variable Apq. This variable

generates all the strings that can take P from p with an empty stack

to q with an empty stack.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 25 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Proof idea:

Given a PDA P , make a CFG G generating all the strings that P

accepts.

P accepts a input w, if G generates w by a sequence of derivations.

Design a grammar that does somewhat more. For each pair of states

p and q in P , the grammar will have a variable Apq. This variable

generates all the strings that can take P from p with an empty stack

to q with an empty stack.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 25 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Proof idea:

We simplify our task by modifying P slightly to give it the following
three features:

It has a single accept state, qaccept.

It empties its stack before accepting.

Each transition either pushes a symbol onto the stack (a push move) or

pops one off the stack (a pop move), but it does not do both at the

same time.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 26 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Proof idea:

We simplify our task by modifying P slightly to give it the following
three features:

It has a single accept state, qaccept.

It empties its stack before accepting.

Each transition either pushes a symbol onto the stack (a push move) or

pops one off the stack (a pop move), but it does not do both at the

same time.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 26 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Proof idea:

We simplify our task by modifying P slightly to give it the following
three features:

It has a single accept state, qaccept.

It empties its stack before accepting.

Each transition either pushes a symbol onto the stack (a push move) or

pops one off the stack (a pop move), but it does not do both at the

same time.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 26 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Proof idea:

We simplify our task by modifying P slightly to give it the following
three features:

It has a single accept state, qaccept.

It empties its stack before accepting.

Each transition either pushes a symbol onto the stack (a push move) or

pops one off the stack (a pop move), but it does not do both at the

same time.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 26 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Proof idea:

We simplify our task by modifying P slightly to give it the following
three features:

It has a single accept state, qaccept.

It empties its stack before accepting.

Each transition either pushes a symbol onto the stack (a push move) or

pops one off the stack (a pop move), but it does not do both at the

same time.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 26 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Proof idea:

We simplify our task by modifying P slightly to give it the following
three features:

It has a single accept state, qaccept.

It empties its stack before accepting.

Each transition either pushes a symbol onto the stack (a push move) or

pops one off the stack (a pop move), but it does not do both at the

same time.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 26 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Proof idea:

We simplify our task by modifying P slightly to give it the following
three features:

It has a single accept state, qaccept.

It empties its stack before accepting.

Each transition either pushes a symbol onto the stack (a push move) or

pops one off the stack (a pop move), but it does not do both at the

same time.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 26 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Proof idea:

Giving P features 1 and 2 is easy.

To give it feature 3,

we replace each transition that simultaneously pops and pushes with a

two transition sequence that goes through a new state;

we replace each transition that neither pops nor pushes with a two

transition sequence that pushes then pops an arbitrary stack symbol.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 27 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Proof idea:

Giving P features 1 and 2 is easy.

To give it feature 3,

we replace each transition that simultaneously pops and pushes with a

two transition sequence that goes through a new state;

we replace each transition that neither pops nor pushes with a two

transition sequence that pushes then pops an arbitrary stack symbol.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 27 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Proof idea:

Giving P features 1 and 2 is easy.

To give it feature 3,

we replace each transition that simultaneously pops and pushes with a

two transition sequence that goes through a new state;

we replace each transition that neither pops nor pushes with a two

transition sequence that pushes then pops an arbitrary stack symbol.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 27 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Proof idea:

Giving P features 1 and 2 is easy.

To give it feature 3,

we replace each transition that simultaneously pops and pushes with a

two transition sequence that goes through a new state;

we replace each transition that neither pops nor pushes with a two

transition sequence that pushes then pops an arbitrary stack symbol.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 27 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Proof idea:

Giving P features 1 and 2 is easy.

To give it feature 3,

we replace each transition that simultaneously pops and pushes with a

two transition sequence that goes through a new state;

we replace each transition that neither pops nor pushes with a two

transition sequence that pushes then pops an arbitrary stack symbol.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 27 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Proof idea:

Giving P features 1 and 2 is easy.

To give it feature 3,

we replace each transition that simultaneously pops and pushes with a

two transition sequence that goes through a new state;

we replace each transition that neither pops nor pushes with a two

transition sequence that pushes then pops an arbitrary stack symbol.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 27 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Proof idea:

Two possibilities occur during P ’s computation on x. Either the
symbol popped at the end is the symbol that was pushed at the
beginning, or not.

Simulate the former possibility with the rule Apq → aArsb;

We simulate the latter possibility with the rule Apq → AprArq.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 28 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Proof idea:

Two possibilities occur during P ’s computation on x. Either the
symbol popped at the end is the symbol that was pushed at the
beginning, or not.

Simulate the former possibility with the rule Apq → aArsb;

We simulate the latter possibility with the rule Apq → AprArq.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 28 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Proof idea:

Two possibilities occur during P ’s computation on x. Either the
symbol popped at the end is the symbol that was pushed at the
beginning, or not.

Simulate the former possibility with the rule Apq → aArsb;

We simulate the latter possibility with the rule Apq → AprArq.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 28 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Proof idea:

Two possibilities occur during P ’s computation on x. Either the
symbol popped at the end is the symbol that was pushed at the
beginning, or not.

Simulate the former possibility with the rule Apq → aArsb;

We simulate the latter possibility with the rule Apq → AprArq.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 28 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Proof idea:

Two possibilities occur during P ’s computation on x. Either the
symbol popped at the end is the symbol that was pushed at the
beginning, or not.

Simulate the former possibility with the rule Apq → aArsb;

We simulate the latter possibility with the rule Apq → AprArq.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 28 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Proof.
Given P = (Q,Σ,Γ, δ, q0, {qaccept}), construct G. The variables of G are

{Apq|p, q ∈ Q}. The start variable is Aq0,qaccept . We describe G’s rules in

three parts.

For each p, q, r, s ∈ Q, u ∈ Γ, and a, b ∈ Σε, if δp, a, ε contains (r, u)

and δ(s, b, u) contains (q, ε) put the rule Apq → aArsb in G.

For each p, q, r ∈ Q, put the rule Apq → AprArq in G.

Finally, for each p ∈ Q, put the rule App → ε in G.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 29 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Proof.
Given P = (Q,Σ,Γ, δ, q0, {qaccept}), construct G. The variables of G are

{Apq|p, q ∈ Q}. The start variable is Aq0,qaccept . We describe G’s rules in

three parts.

For each p, q, r, s ∈ Q, u ∈ Γ, and a, b ∈ Σε, if δp, a, ε contains (r, u)

and δ(s, b, u) contains (q, ε) put the rule Apq → aArsb in G.

For each p, q, r ∈ Q, put the rule Apq → AprArq in G.

Finally, for each p ∈ Q, put the rule App → ε in G.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 29 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Proof.
Given P = (Q,Σ,Γ, δ, q0, {qaccept}), construct G. The variables of G are

{Apq|p, q ∈ Q}. The start variable is Aq0,qaccept . We describe G’s rules in

three parts.

For each p, q, r, s ∈ Q, u ∈ Γ, and a, b ∈ Σε, if δp, a, ε contains (r, u)

and δ(s, b, u) contains (q, ε) put the rule Apq → aArsb in G.

For each p, q, r ∈ Q, put the rule Apq → AprArq in G.

Finally, for each p ∈ Q, put the rule App → ε in G.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 29 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Proof.
Given P = (Q,Σ,Γ, δ, q0, {qaccept}), construct G. The variables of G are

{Apq|p, q ∈ Q}. The start variable is Aq0,qaccept . We describe G’s rules in

three parts.

For each p, q, r, s ∈ Q, u ∈ Γ, and a, b ∈ Σε, if δp, a, ε contains (r, u)

and δ(s, b, u) contains (q, ε) put the rule Apq → aArsb in G.

For each p, q, r ∈ Q, put the rule Apq → AprArq in G.

Finally, for each p ∈ Q, put the rule App → ε in G.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 29 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Proof.
Given P = (Q,Σ,Γ, δ, q0, {qaccept}), construct G. The variables of G are

{Apq|p, q ∈ Q}. The start variable is Aq0,qaccept . We describe G’s rules in

three parts.

For each p, q, r, s ∈ Q, u ∈ Γ, and a, b ∈ Σε, if δp, a, ε contains (r, u)

and δ(s, b, u) contains (q, ε) put the rule Apq → aArsb in G.

For each p, q, r ∈ Q, put the rule Apq → AprArq in G.

Finally, for each p ∈ Q, put the rule App → ε in G.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 29 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Proof.
PDA computation corresponding to the rule Apq → AprArq

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 30 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Proof.
PDA computation corresponding to the rule Apq → AprArq

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 30 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Proof.
PDA computation corresponding to the rule Apq → AprArq

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 30 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Proof.
PDA computation corresponding to the rule Apq → aArsb

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 31 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Proof.
PDA computation corresponding to the rule Apq → aArsb

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 31 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Proof.
PDA computation corresponding to the rule Apq → aArsb

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 31 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Claim
If Apq generates x, then x can bring P from p with empty stack to q with

empty stack.

Claim
If x can bring P from p with empty stack to q with empty stack, Apq
generates x.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 32 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Claim
If Apq generates x, then x can bring P from p with empty stack to q with

empty stack.

Claim
If x can bring P from p with empty stack to q with empty stack, Apq
generates x.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 32 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Lemma
If a pushdown automaton recognizes some language, then it is context free.

Claim
If Apq generates x, then x can bring P from p with empty stack to q with

empty stack.

Claim
If x can bring P from p with empty stack to q with empty stack, Apq
generates x.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 32 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Claim
If Apq generates x, then x can bring P from p with empty stack to q with

empty stack.

Proof.
We prove this claim by induction on the number of steps in the derivation

of x from Apq.

Basis: The derivation has 1 step. A derivation with a single step must

use a rule whose right-hand side contains no variables. The only rules

in G where no variables occur on the right-hand side are App → ε.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 33 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Claim
If Apq generates x, then x can bring P from p with empty stack to q with

empty stack.

Proof.
We prove this claim by induction on the number of steps in the derivation

of x from Apq.

Basis: The derivation has 1 step. A derivation with a single step must

use a rule whose right-hand side contains no variables. The only rules

in G where no variables occur on the right-hand side are App → ε.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 33 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Claim
If Apq generates x, then x can bring P from p with empty stack to q with

empty stack.

Proof.
We prove this claim by induction on the number of steps in the derivation

of x from Apq.

Basis: The derivation has 1 step. A derivation with a single step must

use a rule whose right-hand side contains no variables. The only rules

in G where no variables occur on the right-hand side are App → ε.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 33 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Proof.
Induction step: Assume true for derivations of length at most k, where

k ≥ 1, and prove true for derivations of length k + 1. Suppose Apq
∗⇒ x

with k + 1 steps. The first step in this derivation is either Apq ⇒ aArsb or

Apq ⇒ AprArq. We handle these two cases separately.

In the first case, consider the portion y of x that Ars generates, x = ayb.

Ars
∗⇒ y with k steps, then P can go from r on empty stack to s on

empty stack.

Because Apq → aArsb is a rule in G, δ(p, a, ε) contains (r, u) and

δ(s, b, u) contains (q, ε), for some stack symbol u.

x can bring it from p with empty stack to q with empty stack.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 34 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Proof.
Induction step: Assume true for derivations of length at most k, where

k ≥ 1, and prove true for derivations of length k + 1. Suppose Apq
∗⇒ x

with k + 1 steps. The first step in this derivation is either Apq ⇒ aArsb or

Apq ⇒ AprArq. We handle these two cases separately.

In the first case, consider the portion y of x that Ars generates, x = ayb.

Ars
∗⇒ y with k steps, then P can go from r on empty stack to s on

empty stack.

Because Apq → aArsb is a rule in G, δ(p, a, ε) contains (r, u) and

δ(s, b, u) contains (q, ε), for some stack symbol u.

x can bring it from p with empty stack to q with empty stack.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 34 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Proof.
Induction step: Assume true for derivations of length at most k, where

k ≥ 1, and prove true for derivations of length k + 1. Suppose Apq
∗⇒ x

with k + 1 steps. The first step in this derivation is either Apq ⇒ aArsb or

Apq ⇒ AprArq. We handle these two cases separately.

In the first case, consider the portion y of x that Ars generates, x = ayb.

Ars
∗⇒ y with k steps, then P can go from r on empty stack to s on

empty stack.

Because Apq → aArsb is a rule in G, δ(p, a, ε) contains (r, u) and

δ(s, b, u) contains (q, ε), for some stack symbol u.

x can bring it from p with empty stack to q with empty stack.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 34 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Proof.
Induction step: Assume true for derivations of length at most k, where

k ≥ 1, and prove true for derivations of length k + 1. Suppose Apq
∗⇒ x

with k + 1 steps. The first step in this derivation is either Apq ⇒ aArsb or

Apq ⇒ AprArq. We handle these two cases separately.

In the first case, consider the portion y of x that Ars generates, x = ayb.

Ars
∗⇒ y with k steps, then P can go from r on empty stack to s on

empty stack.

Because Apq → aArsb is a rule in G, δ(p, a, ε) contains (r, u) and

δ(s, b, u) contains (q, ε), for some stack symbol u.

x can bring it from p with empty stack to q with empty stack.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 34 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Proof.
Induction step: Assume true for derivations of length at most k, where

k ≥ 1, and prove true for derivations of length k + 1. Suppose Apq
∗⇒ x

with k + 1 steps. The first step in this derivation is either Apq ⇒ aArsb or

Apq ⇒ AprArq. We handle these two cases separately.

In the first case, consider the portion y of x that Ars generates, x = ayb.

Ars
∗⇒ y with k steps, then P can go from r on empty stack to s on

empty stack.

Because Apq → aArsb is a rule in G, δ(p, a, ε) contains (r, u) and

δ(s, b, u) contains (q, ε), for some stack symbol u.

x can bring it from p with empty stack to q with empty stack.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 34 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Claim
If Apq generates x, then x can bring P from p with empty stack to q with

empty stack.

Proof.
In the second case, consider the portions y and z of x that Apr and Arq
respectively generate, x = yz.

Apr
∗⇒ y in at most k steps and Arq

∗⇒ z in at most k steps.

y can bring P from p to r, and z can bring P from r to q, with

empty stacks at the beginning and end.

x can bring it from p with empty stack to q with empty stack.

This completes the induction step.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 35 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Claim
If Apq generates x, then x can bring P from p with empty stack to q with

empty stack.

Proof.
In the second case, consider the portions y and z of x that Apr and Arq
respectively generate, x = yz.

Apr
∗⇒ y in at most k steps and Arq

∗⇒ z in at most k steps.

y can bring P from p to r, and z can bring P from r to q, with

empty stacks at the beginning and end.

x can bring it from p with empty stack to q with empty stack.

This completes the induction step.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 35 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Claim
If Apq generates x, then x can bring P from p with empty stack to q with

empty stack.

Proof.
In the second case, consider the portions y and z of x that Apr and Arq
respectively generate, x = yz.

Apr
∗⇒ y in at most k steps and Arq

∗⇒ z in at most k steps.

y can bring P from p to r, and z can bring P from r to q, with

empty stacks at the beginning and end.

x can bring it from p with empty stack to q with empty stack.

This completes the induction step.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 35 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Claim
If Apq generates x, then x can bring P from p with empty stack to q with

empty stack.

Proof.
In the second case, consider the portions y and z of x that Apr and Arq
respectively generate, x = yz.

Apr
∗⇒ y in at most k steps and Arq

∗⇒ z in at most k steps.

y can bring P from p to r, and z can bring P from r to q, with

empty stacks at the beginning and end.

x can bring it from p with empty stack to q with empty stack.

This completes the induction step.
Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 35 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Claim
If x can bring P from p with empty stack to q with empty stack, Apq
generates x.

Proof.
We prove this claim by induction on the number of steps in the

computation of P that goes from p to q with empty stacks on input x.

Basis: The computation has 0 steps.

If a computation has 0 steps, it starts and ends at the same p. We show

that App
∗⇒ x. In 0 steps, P cannot read any characters, so x = ε. By

construction, G has the rule App → ε, so the basis is proved.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 36 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Claim
If x can bring P from p with empty stack to q with empty stack, Apq
generates x.

Proof.
We prove this claim by induction on the number of steps in the

computation of P that goes from p to q with empty stacks on input x.

Basis: The computation has 0 steps.

If a computation has 0 steps, it starts and ends at the same p. We show

that App
∗⇒ x. In 0 steps, P cannot read any characters, so x = ε. By

construction, G has the rule App → ε, so the basis is proved.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 36 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Claim
If x can bring P from p with empty stack to q with empty stack, Apq
generates x.

Proof.
We prove this claim by induction on the number of steps in the

computation of P that goes from p to q with empty stacks on input x.

Basis: The computation has 0 steps.

If a computation has 0 steps, it starts and ends at the same p. We show

that App
∗⇒ x. In 0 steps, P cannot read any characters, so x = ε. By

construction, G has the rule App → ε, so the basis is proved.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 36 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Claim
If x can bring P from p with empty stack to q with empty stack, Apq
generates x.

Proof.
We prove this claim by induction on the number of steps in the

computation of P that goes from p to q with empty stacks on input x.

Basis: The computation has 0 steps.

If a computation has 0 steps, it starts and ends at the same p. We show

that App
∗⇒ x. In 0 steps, P cannot read any characters, so x = ε. By

construction, G has the rule App → ε, so the basis is proved.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 36 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Claim
If x can bring P from p with empty stack to q with empty stack, Apq
generates x.

Proof.
Induction step: Assume true for computations of length at most k, where

k ≥ 0, and prove true for computations of length k + 1.

Suppose that P has a computation wherein x brings p to q with empty

stacks in k + 1 steps. Either the stack is empty only at the beginning and

end of this computation, or it becomes empty elsewhere, too.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 37 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Claim
If x can bring P from p with empty stack to q with empty stack, Apq
generates x.

Proof.
Induction step: Assume true for computations of length at most k, where

k ≥ 0, and prove true for computations of length k + 1.

Suppose that P has a computation wherein x brings p to q with empty

stacks in k + 1 steps. Either the stack is empty only at the beginning and

end of this computation, or it becomes empty elsewhere, too.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 37 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Proof.
In the first case,

The symbol that is pushed at the first move must be the same as the

symbol that is popped at the last move, called it u.

δ(p, a, ε) contains (r, u) and δ(s, b, u) contains (q, ε), and so rule

Apq → aArsb is in G.

Consider x = ayb, P can go from r with an empty stack to s with an

empty stack on input y, the computation on y has

(k + 1)− 2 = k − 1 steps.

Ars
∗⇒ y and hence Apq

∗⇒ x

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 38 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Proof.
In the first case,

The symbol that is pushed at the first move must be the same as the

symbol that is popped at the last move, called it u.

δ(p, a, ε) contains (r, u) and δ(s, b, u) contains (q, ε), and so rule

Apq → aArsb is in G.

Consider x = ayb, P can go from r with an empty stack to s with an

empty stack on input y, the computation on y has

(k + 1)− 2 = k − 1 steps.

Ars
∗⇒ y and hence Apq

∗⇒ x

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 38 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Proof.
In the first case,

The symbol that is pushed at the first move must be the same as the

symbol that is popped at the last move, called it u.

δ(p, a, ε) contains (r, u) and δ(s, b, u) contains (q, ε), and so rule

Apq → aArsb is in G.

Consider x = ayb, P can go from r with an empty stack to s with an

empty stack on input y, the computation on y has

(k + 1)− 2 = k − 1 steps.

Ars
∗⇒ y and hence Apq

∗⇒ x

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 38 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Proof.
In the first case,

The symbol that is pushed at the first move must be the same as the

symbol that is popped at the last move, called it u.

δ(p, a, ε) contains (r, u) and δ(s, b, u) contains (q, ε), and so rule

Apq → aArsb is in G.

Consider x = ayb, P can go from r with an empty stack to s with an

empty stack on input y, the computation on y has

(k + 1)− 2 = k − 1 steps.

Ars
∗⇒ y and hence Apq

∗⇒ x

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 38 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Proof.
In the first case,

The symbol that is pushed at the first move must be the same as the

symbol that is popped at the last move, called it u.

δ(p, a, ε) contains (r, u) and δ(s, b, u) contains (q, ε), and so rule

Apq → aArsb is in G.

Consider x = ayb, P can go from r with an empty stack to s with an

empty stack on input y, the computation on y has

(k + 1)− 2 = k − 1 steps.

Ars
∗⇒ y and hence Apq

∗⇒ x

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 38 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Proof.
In the second case,

let r be a state where the stack becomes empty other than at the

beginning or end of the computation on x.

The portions of the computation from p to r and from r to q each

contain at most k steps.

y is the input read during the first portion and z is the input read

during the second portion.

We have Apr
∗⇒ y and Arq

∗⇒ z. Because Apq → AprArq in G, then

Apq
∗⇒ x.

Proof is complete.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 39 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Proof.
In the second case,

let r be a state where the stack becomes empty other than at the

beginning or end of the computation on x.

The portions of the computation from p to r and from r to q each

contain at most k steps.

y is the input read during the first portion and z is the input read

during the second portion.

We have Apr
∗⇒ y and Arq

∗⇒ z. Because Apq → AprArq in G, then

Apq
∗⇒ x.

Proof is complete.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 39 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Proof.
In the second case,

let r be a state where the stack becomes empty other than at the

beginning or end of the computation on x.

The portions of the computation from p to r and from r to q each

contain at most k steps.

y is the input read during the first portion and z is the input read

during the second portion.

We have Apr
∗⇒ y and Arq

∗⇒ z. Because Apq → AprArq in G, then

Apq
∗⇒ x.

Proof is complete.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 39 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Proof.
In the second case,

let r be a state where the stack becomes empty other than at the

beginning or end of the computation on x.

The portions of the computation from p to r and from r to q each

contain at most k steps.

y is the input read during the first portion and z is the input read

during the second portion.

We have Apr
∗⇒ y and Arq

∗⇒ z. Because Apq → AprArq in G, then

Apq
∗⇒ x.

Proof is complete.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 39 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Proof.
In the second case,

let r be a state where the stack becomes empty other than at the

beginning or end of the computation on x.

The portions of the computation from p to r and from r to q each

contain at most k steps.

y is the input read during the first portion and z is the input read

during the second portion.

We have Apr
∗⇒ y and Arq

∗⇒ z. Because Apq → AprArq in G, then

Apq
∗⇒ x.

Proof is complete.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 39 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Proof.
In the second case,

let r be a state where the stack becomes empty other than at the

beginning or end of the computation on x.

The portions of the computation from p to r and from r to q each

contain at most k steps.

y is the input read during the first portion and z is the input read

during the second portion.

We have Apr
∗⇒ y and Arq

∗⇒ z. Because Apq → AprArq in G, then

Apq
∗⇒ x.

Proof is complete.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 39 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Corollary
Every regular language is context free.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 40 / 56

Pushdown Automata Equivalence With Context-Free Grammars

Equivalence With Context-Free Grammars

Corollary
Every regular language is context free.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 40 / 56

Non-Context-Free Languages

Outline

1 Context-Free Grammars

2 Pushdown Automata

3 Non-Context-Free Languages

The Pumping Lemma for Context-Free Languages

4 Deterministic Context-Free Languages

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 41 / 56

Non-Context-Free Languages The Pumping Lemma for Context-Free Languages

The Pumping Lemma for Context-Free Languages

Theorem (Pumping lemma for context-free languages 泵引理)

If A is a context-free language, then there is a number p (the pumping

length) where, if s is any string in A of length at least p, then s may be

divided into five pieces, s = uvxyz, satisfying the conditions:

1 for each i ≥ 0, uvixyiz ∈ A,

2 |vy| > 0, and

3 |vxy| ≤ p.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 42 / 56

Non-Context-Free Languages The Pumping Lemma for Context-Free Languages

The Pumping Lemma for Context-Free Languages

Theorem (Pumping lemma for context-free languages 泵引理)

If A is a context-free language, then there is a number p (the pumping

length) where, if s is any string in A of length at least p, then s may be

divided into five pieces, s = uvxyz, satisfying the conditions:

1 for each i ≥ 0, uvixyiz ∈ A,

2 |vy| > 0, and

3 |vxy| ≤ p.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 42 / 56

Non-Context-Free Languages The Pumping Lemma for Context-Free Languages

The Pumping Lemma for Context-Free Languages

Theorem (Pumping lemma for context-free languages 泵引理)

If A is a context-free language, then there is a number p (the pumping

length) where, if s is any string in A of length at least p, then s may be

divided into five pieces, s = uvxyz, satisfying the conditions:

1 for each i ≥ 0, uvixyiz ∈ A,

2 |vy| > 0, and

3 |vxy| ≤ p.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 42 / 56

Non-Context-Free Languages The Pumping Lemma for Context-Free Languages

The Pumping Lemma for Context-Free Languages

Theorem (Pumping lemma for context-free languages 泵引理)

If A is a context-free language, then there is a number p (the pumping

length) where, if s is any string in A of length at least p, then s may be

divided into five pieces, s = uvxyz, satisfying the conditions:

1 for each i ≥ 0, uvixyiz ∈ A,

2 |vy| > 0, and

3 |vxy| ≤ p.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 42 / 56

Non-Context-Free Languages The Pumping Lemma for Context-Free Languages

The Pumping Lemma for Context-Free Languages

Proof idea: Let A be a CFL and let G be a CFG that generates it. We

must show that any sufficiently long string s in A can be pumped and

remain in A.

Let s be a very long string in A, it is derivable from G and has a

parse tree. The parse tree must contain a long path from the root to

one of a leaf.

On this long path, some variable symbol R must repeat because of

the pigeonhole principle.

Replace the subtree under the second occurrence of R with the

subtree under the first occurrence of R and still get a legal parse tree.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 43 / 56

Non-Context-Free Languages The Pumping Lemma for Context-Free Languages

The Pumping Lemma for Context-Free Languages

Proof idea: Let A be a CFL and let G be a CFG that generates it. We

must show that any sufficiently long string s in A can be pumped and

remain in A.

Let s be a very long string in A, it is derivable from G and has a

parse tree. The parse tree must contain a long path from the root to

one of a leaf.

On this long path, some variable symbol R must repeat because of

the pigeonhole principle.

Replace the subtree under the second occurrence of R with the

subtree under the first occurrence of R and still get a legal parse tree.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 43 / 56

Non-Context-Free Languages The Pumping Lemma for Context-Free Languages

The Pumping Lemma for Context-Free Languages

Proof idea: Let A be a CFL and let G be a CFG that generates it. We

must show that any sufficiently long string s in A can be pumped and

remain in A.

Let s be a very long string in A, it is derivable from G and has a

parse tree. The parse tree must contain a long path from the root to

one of a leaf.

On this long path, some variable symbol R must repeat because of

the pigeonhole principle.

Replace the subtree under the second occurrence of R with the

subtree under the first occurrence of R and still get a legal parse tree.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 43 / 56

Non-Context-Free Languages The Pumping Lemma for Context-Free Languages

The Pumping Lemma for Context-Free Languages

Proof idea: Let A be a CFL and let G be a CFG that generates it. We

must show that any sufficiently long string s in A can be pumped and

remain in A.

Let s be a very long string in A, it is derivable from G and has a

parse tree. The parse tree must contain a long path from the root to

one of a leaf.

On this long path, some variable symbol R must repeat because of

the pigeonhole principle.

Replace the subtree under the second occurrence of R with the

subtree under the first occurrence of R and still get a legal parse tree.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 43 / 56

Non-Context-Free Languages The Pumping Lemma for Context-Free Languages

The Pumping Lemma for Context-Free Languages

Example (Surgery on parse trees)

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 44 / 56

Non-Context-Free Languages The Pumping Lemma for Context-Free Languages

The Pumping Lemma for Context-Free Languages

Proof.
Let G be a CFG for CFL A. Let b be the maximum number of symbols in

the right-hand side of a rule.

A node can have no more than b children. It means at most bh leaves

are within h steps of the start variable (the root of the parse tree).

If the height of the parse tree is at most h, the length of the string

generated is at most bh.

Let V denote the number of variables in G, we set p, the pumping

length, to be b|V |+1.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 45 / 56

Non-Context-Free Languages The Pumping Lemma for Context-Free Languages

The Pumping Lemma for Context-Free Languages

Proof.
Let G be a CFG for CFL A. Let b be the maximum number of symbols in

the right-hand side of a rule.

A node can have no more than b children. It means at most bh leaves

are within h steps of the start variable (the root of the parse tree).

If the height of the parse tree is at most h, the length of the string

generated is at most bh.

Let V denote the number of variables in G, we set p, the pumping

length, to be b|V |+1.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 45 / 56

Non-Context-Free Languages The Pumping Lemma for Context-Free Languages

The Pumping Lemma for Context-Free Languages

Proof.
Let G be a CFG for CFL A. Let b be the maximum number of symbols in

the right-hand side of a rule.

A node can have no more than b children. It means at most bh leaves

are within h steps of the start variable (the root of the parse tree).

If the height of the parse tree is at most h, the length of the string

generated is at most bh.

Let V denote the number of variables in G, we set p, the pumping

length, to be b|V |+1.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 45 / 56

Non-Context-Free Languages The Pumping Lemma for Context-Free Languages

The Pumping Lemma for Context-Free Languages

Proof.
To see how to pump any such string s

let τ be one of its parse trees. If s has several parse trees, choose τ to

be a parse tree that has the smallest number of nodes.

τ must be at least |V |+ 1 high, so its longest path from the root to a

leaf has length at least |V |+ 1.

The path has at least |V |+ 2 nodes and hence this path has at least

|V |+ 1 variables.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 46 / 56

Non-Context-Free Languages The Pumping Lemma for Context-Free Languages

The Pumping Lemma for Context-Free Languages

Proof.
To see how to pump any such string s

let τ be one of its parse trees. If s has several parse trees, choose τ to

be a parse tree that has the smallest number of nodes.

τ must be at least |V |+ 1 high, so its longest path from the root to a

leaf has length at least |V |+ 1.

The path has at least |V |+ 2 nodes and hence this path has at least

|V |+ 1 variables.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 46 / 56

Non-Context-Free Languages The Pumping Lemma for Context-Free Languages

The Pumping Lemma for Context-Free Languages

Proof.
To see how to pump any such string s

let τ be one of its parse trees. If s has several parse trees, choose τ to

be a parse tree that has the smallest number of nodes.

τ must be at least |V |+ 1 high, so its longest path from the root to a

leaf has length at least |V |+ 1.

The path has at least |V |+ 2 nodes and hence this path has at least

|V |+ 1 variables.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 46 / 56

Non-Context-Free Languages The Pumping Lemma for Context-Free Languages

The Pumping Lemma for Context-Free Languages

Proof.
To see how to pump any such string s

let τ be one of its parse trees. If s has several parse trees, choose τ to

be a parse tree that has the smallest number of nodes.

τ must be at least |V |+ 1 high, so its longest path from the root to a

leaf has length at least |V |+ 1.

The path has at least |V |+ 2 nodes and hence this path has at least

|V |+ 1 variables.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 46 / 56

Non-Context-Free Languages The Pumping Lemma for Context-Free Languages

The Pumping Lemma for Context-Free Languages

Proof.
With G having only |V | variables, some variable R appears more than

once on that path.

we select R to be a variable that repeats among the lowest |V |+ 1

variables on this path.

The path has at least |V |+ 2 nodes and hence this path has at least

|V |+ 1 variables.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 47 / 56

Non-Context-Free Languages The Pumping Lemma for Context-Free Languages

The Pumping Lemma for Context-Free Languages

Proof.
With G having only |V | variables, some variable R appears more than

once on that path.

we select R to be a variable that repeats among the lowest |V |+ 1

variables on this path.

The path has at least |V |+ 2 nodes and hence this path has at least

|V |+ 1 variables.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 47 / 56

Non-Context-Free Languages The Pumping Lemma for Context-Free Languages

The Pumping Lemma for Context-Free Languages

Proof.
With G having only |V | variables, some variable R appears more than

once on that path.

we select R to be a variable that repeats among the lowest |V |+ 1

variables on this path.

The path has at least |V |+ 2 nodes and hence this path has at least

|V |+ 1 variables.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 47 / 56

Non-Context-Free Languages The Pumping Lemma for Context-Free Languages

The Pumping Lemma for Context-Free Languages

Proof.
We divide s into uvxyz according the Figure.

Each occurrence of R has a subtree under it, generating a part of the

string s.

The upper occurrence of R has a larger subtree and generates vxy,

whereas the lower occurrence generates just x with a smaller subtree.

We substitute one for the other and still obtain a valid parse tree.

That establishes condition 1 of the lemma

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 48 / 56

Non-Context-Free Languages The Pumping Lemma for Context-Free Languages

The Pumping Lemma for Context-Free Languages

Proof.
We divide s into uvxyz according the Figure.

Each occurrence of R has a subtree under it, generating a part of the

string s.

The upper occurrence of R has a larger subtree and generates vxy,

whereas the lower occurrence generates just x with a smaller subtree.

We substitute one for the other and still obtain a valid parse tree.

That establishes condition 1 of the lemma

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 48 / 56

Non-Context-Free Languages The Pumping Lemma for Context-Free Languages

The Pumping Lemma for Context-Free Languages

Proof.
We divide s into uvxyz according the Figure.

Each occurrence of R has a subtree under it, generating a part of the

string s.

The upper occurrence of R has a larger subtree and generates vxy,

whereas the lower occurrence generates just x with a smaller subtree.

We substitute one for the other and still obtain a valid parse tree.

That establishes condition 1 of the lemma

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 48 / 56

Non-Context-Free Languages The Pumping Lemma for Context-Free Languages

The Pumping Lemma for Context-Free Languages

Proof.
We divide s into uvxyz according the Figure.

Each occurrence of R has a subtree under it, generating a part of the

string s.

The upper occurrence of R has a larger subtree and generates vxy,

whereas the lower occurrence generates just x with a smaller subtree.

We substitute one for the other and still obtain a valid parse tree.

That establishes condition 1 of the lemma

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 48 / 56

Non-Context-Free Languages The Pumping Lemma for Context-Free Languages

The Pumping Lemma for Context-Free Languages

Proof.
We divide s into uvxyz according the Figure.

Each occurrence of R has a subtree under it, generating a part of the

string s.

The upper occurrence of R has a larger subtree and generates vxy,

whereas the lower occurrence generates just x with a smaller subtree.

We substitute one for the other and still obtain a valid parse tree.

That establishes condition 1 of the lemma

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 48 / 56

Non-Context-Free Languages The Pumping Lemma for Context-Free Languages

The Pumping Lemma for Context-Free Languages

Proof.
For condition 2, we must be sure that v and y are not both ε.

If they were, the parse tree obtained by substituting the smaller

subtree for the larger would have fewer nodes than τ does and would

still generate s.

This result isn’t possible because we had already chosen τ to be a

parse tree for s with the smallest number of nodes.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 49 / 56

Non-Context-Free Languages The Pumping Lemma for Context-Free Languages

The Pumping Lemma for Context-Free Languages

Proof.
For condition 2, we must be sure that v and y are not both ε.

If they were, the parse tree obtained by substituting the smaller

subtree for the larger would have fewer nodes than τ does and would

still generate s.

This result isn’t possible because we had already chosen τ to be a

parse tree for s with the smallest number of nodes.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 49 / 56

Non-Context-Free Languages The Pumping Lemma for Context-Free Languages

The Pumping Lemma for Context-Free Languages

Proof.
For condition 2, we must be sure that v and y are not both ε.

If they were, the parse tree obtained by substituting the smaller

subtree for the larger would have fewer nodes than τ does and would

still generate s.

This result isn’t possible because we had already chosen τ to be a

parse tree for s with the smallest number of nodes.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 49 / 56

Non-Context-Free Languages The Pumping Lemma for Context-Free Languages

The Pumping Lemma for Context-Free Languages

Proof.
For condition 3, we need to be sure that vxy has length at most p.

In the parse tree for s the upper occurrence of R generates vxy.

We chose R such that both occurrences fall within the bottom |V |+ 1

variables on the path and chose the longest path in the parse tree.

The subtree where R generates vxy is at most |V |+ 1 high.

A tree of this height can generate a string of length at most

b|V |+1 = p.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 50 / 56

Non-Context-Free Languages The Pumping Lemma for Context-Free Languages

The Pumping Lemma for Context-Free Languages

Proof.
For condition 3, we need to be sure that vxy has length at most p.

In the parse tree for s the upper occurrence of R generates vxy.

We chose R such that both occurrences fall within the bottom |V |+ 1

variables on the path and chose the longest path in the parse tree.

The subtree where R generates vxy is at most |V |+ 1 high.

A tree of this height can generate a string of length at most

b|V |+1 = p.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 50 / 56

Non-Context-Free Languages The Pumping Lemma for Context-Free Languages

The Pumping Lemma for Context-Free Languages

Proof.
For condition 3, we need to be sure that vxy has length at most p.

In the parse tree for s the upper occurrence of R generates vxy.

We chose R such that both occurrences fall within the bottom |V |+ 1

variables on the path and chose the longest path in the parse tree.

The subtree where R generates vxy is at most |V |+ 1 high.

A tree of this height can generate a string of length at most

b|V |+1 = p.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 50 / 56

Non-Context-Free Languages The Pumping Lemma for Context-Free Languages

The Pumping Lemma for Context-Free Languages

Proof.
For condition 3, we need to be sure that vxy has length at most p.

In the parse tree for s the upper occurrence of R generates vxy.

We chose R such that both occurrences fall within the bottom |V |+ 1

variables on the path and chose the longest path in the parse tree.

The subtree where R generates vxy is at most |V |+ 1 high.

A tree of this height can generate a string of length at most

b|V |+1 = p.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 50 / 56

Non-Context-Free Languages The Pumping Lemma for Context-Free Languages

The Pumping Lemma for Context-Free Languages

Proof.
For condition 3, we need to be sure that vxy has length at most p.

In the parse tree for s the upper occurrence of R generates vxy.

We chose R such that both occurrences fall within the bottom |V |+ 1

variables on the path and chose the longest path in the parse tree.

The subtree where R generates vxy is at most |V |+ 1 high.

A tree of this height can generate a string of length at most

b|V |+1 = p.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 50 / 56

Non-Context-Free Languages The Pumping Lemma for Context-Free Languages

The Pumping Lemma for Context-Free Languages

Example

Use the pumping lemma to show that the language B = {anbncn|n ≥ 0}
is not context free.

Example

Let C = {aibjck|0 ≤ i ≤ j ≤ k}. We use the pumping lemma to show

that C is not a CFL.

Example

Let D = {ww|w ∈ {0, 1}∗}. Use the pumping lemma to show that D is

not a CFL.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 51 / 56

Non-Context-Free Languages The Pumping Lemma for Context-Free Languages

The Pumping Lemma for Context-Free Languages

Example

Use the pumping lemma to show that the language B = {anbncn|n ≥ 0}
is not context free.

Example

Let C = {aibjck|0 ≤ i ≤ j ≤ k}. We use the pumping lemma to show

that C is not a CFL.

Example

Let D = {ww|w ∈ {0, 1}∗}. Use the pumping lemma to show that D is

not a CFL.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 51 / 56

Non-Context-Free Languages The Pumping Lemma for Context-Free Languages

The Pumping Lemma for Context-Free Languages

Example

Use the pumping lemma to show that the language B = {anbncn|n ≥ 0}
is not context free.

Example

Let C = {aibjck|0 ≤ i ≤ j ≤ k}. We use the pumping lemma to show

that C is not a CFL.

Example

Let D = {ww|w ∈ {0, 1}∗}. Use the pumping lemma to show that D is

not a CFL.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 51 / 56

Deterministic Context-Free Languages

Outline

1 Context-Free Grammars

2 Pushdown Automata

3 Non-Context-Free Languages

4 Deterministic Context-Free Languages

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 52 / 56

Deterministic Context-Free Languages

Deterministic Context-Free Languages

The languages that are recognizable by deterministic pushdown

automata (DPDAs) are called deterministic context-free languages

(DCFLs).

Basic principle of determinism: at each step of its computation, the

DPDA has at most one way to proceed according to its transition

function.

ε-moves is allowed in the DPDA’s transition function.

ε-input moves corresponding to δ(q, ε, x);

ε-stack moves corresponding to δ(q, a, ε);

If a DPDA can make an ε-move in a certain situation, it is prohibited

from making a move in that same situation that involves processing a

symbol instead of ε.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 53 / 56

Deterministic Context-Free Languages

Deterministic Context-Free Languages

The languages that are recognizable by deterministic pushdown

automata (DPDAs) are called deterministic context-free languages

(DCFLs).

Basic principle of determinism: at each step of its computation, the

DPDA has at most one way to proceed according to its transition

function.

ε-moves is allowed in the DPDA’s transition function.

ε-input moves corresponding to δ(q, ε, x);

ε-stack moves corresponding to δ(q, a, ε);

If a DPDA can make an ε-move in a certain situation, it is prohibited

from making a move in that same situation that involves processing a

symbol instead of ε.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 53 / 56

Deterministic Context-Free Languages

Deterministic Context-Free Languages

The languages that are recognizable by deterministic pushdown

automata (DPDAs) are called deterministic context-free languages

(DCFLs).

Basic principle of determinism: at each step of its computation, the

DPDA has at most one way to proceed according to its transition

function.

ε-moves is allowed in the DPDA’s transition function.

ε-input moves corresponding to δ(q, ε, x);

ε-stack moves corresponding to δ(q, a, ε);

If a DPDA can make an ε-move in a certain situation, it is prohibited

from making a move in that same situation that involves processing a

symbol instead of ε.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 53 / 56

Deterministic Context-Free Languages

Deterministic Context-Free Languages

The languages that are recognizable by deterministic pushdown

automata (DPDAs) are called deterministic context-free languages

(DCFLs).

Basic principle of determinism: at each step of its computation, the

DPDA has at most one way to proceed according to its transition

function.

ε-moves is allowed in the DPDA’s transition function.

ε-input moves corresponding to δ(q, ε, x);

ε-stack moves corresponding to δ(q, a, ε);

If a DPDA can make an ε-move in a certain situation, it is prohibited

from making a move in that same situation that involves processing a

symbol instead of ε.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 53 / 56

Deterministic Context-Free Languages

Deterministic Context-Free Languages

The languages that are recognizable by deterministic pushdown

automata (DPDAs) are called deterministic context-free languages

(DCFLs).

Basic principle of determinism: at each step of its computation, the

DPDA has at most one way to proceed according to its transition

function.

ε-moves is allowed in the DPDA’s transition function.

ε-input moves corresponding to δ(q, ε, x);

ε-stack moves corresponding to δ(q, a, ε);

If a DPDA can make an ε-move in a certain situation, it is prohibited

from making a move in that same situation that involves processing a

symbol instead of ε.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 53 / 56

Deterministic Context-Free Languages

Deterministic Context-Free Languages

The languages that are recognizable by deterministic pushdown

automata (DPDAs) are called deterministic context-free languages

(DCFLs).

Basic principle of determinism: at each step of its computation, the

DPDA has at most one way to proceed according to its transition

function.

ε-moves is allowed in the DPDA’s transition function.

ε-input moves corresponding to δ(q, ε, x);

ε-stack moves corresponding to δ(q, a, ε);

If a DPDA can make an ε-move in a certain situation, it is prohibited

from making a move in that same situation that involves processing a

symbol instead of ε.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 53 / 56

Deterministic Context-Free Languages

Deterministic Context-Free Languages

The languages that are recognizable by deterministic pushdown

automata (DPDAs) are called deterministic context-free languages

(DCFLs).

Basic principle of determinism: at each step of its computation, the

DPDA has at most one way to proceed according to its transition

function.

ε-moves is allowed in the DPDA’s transition function.

ε-input moves corresponding to δ(q, ε, x);

ε-stack moves corresponding to δ(q, a, ε);

If a DPDA can make an ε-move in a certain situation, it is prohibited

from making a move in that same situation that involves processing a

symbol instead of ε.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 53 / 56

Deterministic Context-Free Languages

Deterministic Context-Free Languages

Definition (DPDA (确定型下推自动机))

A deterministic pushdown automaton (DPDA) is a 6-tuple

(Q,Σ,Γ, δ, q0, F), where

1 Q is a finite set of states,

2 Σ is a finite set called the input alphabet,

3 Γ is a finite set called the stack alphabet,

4 δ : Q× Σε × Γε → (Q× Γε) ∪ {∅} is the transition function,

5 q0 ∈ Q is the start state, and

6 F ⊆ Q is the set of accept states.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 54 / 56

Deterministic Context-Free Languages

Deterministic Context-Free Languages

Definition (DPDA (确定型下推自动机))

A deterministic pushdown automaton (DPDA) is a 6-tuple

(Q,Σ,Γ, δ, q0, F), where

1 Q is a finite set of states,

2 Σ is a finite set called the input alphabet,

3 Γ is a finite set called the stack alphabet,

4 δ : Q× Σε × Γε → (Q× Γε) ∪ {∅} is the transition function,

5 q0 ∈ Q is the start state, and

6 F ⊆ Q is the set of accept states.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 54 / 56

Deterministic Context-Free Languages

Deterministic Context-Free Languages

Definition (DPDA (确定型下推自动机))

A deterministic pushdown automaton (DPDA) is a 6-tuple

(Q,Σ,Γ, δ, q0, F), where

1 Q is a finite set of states,

2 Σ is a finite set called the input alphabet,

3 Γ is a finite set called the stack alphabet,

4 δ : Q× Σε × Γε → (Q× Γε) ∪ {∅} is the transition function,

5 q0 ∈ Q is the start state, and

6 F ⊆ Q is the set of accept states.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 54 / 56

Deterministic Context-Free Languages

Deterministic Context-Free Languages

Definition (DPDA (确定型下推自动机))

A deterministic pushdown automaton (DPDA) is a 6-tuple

(Q,Σ,Γ, δ, q0, F), where

1 Q is a finite set of states,

2 Σ is a finite set called the input alphabet,

3 Γ is a finite set called the stack alphabet,

4 δ : Q× Σε × Γε → (Q× Γε) ∪ {∅} is the transition function,

5 q0 ∈ Q is the start state, and

6 F ⊆ Q is the set of accept states.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 54 / 56

Deterministic Context-Free Languages

Deterministic Context-Free Languages

Definition (DPDA (确定型下推自动机))

A deterministic pushdown automaton (DPDA) is a 6-tuple

(Q,Σ,Γ, δ, q0, F), where

1 Q is a finite set of states,

2 Σ is a finite set called the input alphabet,

3 Γ is a finite set called the stack alphabet,

4 δ : Q× Σε × Γε → (Q× Γε) ∪ {∅} is the transition function,

5 q0 ∈ Q is the start state, and

6 F ⊆ Q is the set of accept states.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 54 / 56

Deterministic Context-Free Languages

Deterministic Context-Free Languages

Definition (DPDA (确定型下推自动机))

A deterministic pushdown automaton (DPDA) is a 6-tuple

(Q,Σ,Γ, δ, q0, F), where

1 Q is a finite set of states,

2 Σ is a finite set called the input alphabet,

3 Γ is a finite set called the stack alphabet,

4 δ : Q× Σε × Γε → (Q× Γε) ∪ {∅} is the transition function,

5 q0 ∈ Q is the start state, and

6 F ⊆ Q is the set of accept states.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 54 / 56

Deterministic Context-Free Languages

Deterministic Context-Free Languages

Definition (DPDA (确定型下推自动机))

A deterministic pushdown automaton (DPDA) is a 6-tuple

(Q,Σ,Γ, δ, q0, F), where

1 Q is a finite set of states,

2 Σ is a finite set called the input alphabet,

3 Γ is a finite set called the stack alphabet,

4 δ : Q× Σε × Γε → (Q× Γε) ∪ {∅} is the transition function,

5 q0 ∈ Q is the start state, and

6 F ⊆ Q is the set of accept states.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 54 / 56

Deterministic Context-Free Languages

Deterministic Context-Free Languages

Definition (DPDA (确定型下推自动机))

A deterministic pushdown automaton (DPDA) is a 6-tuple

(Q,Σ,Γ, δ, q0, F), where

1 Q is a finite set of states,

2 Σ is a finite set called the input alphabet,

3 Γ is a finite set called the stack alphabet,

4 δ : Q× Σε × Γε → (Q× Γε) ∪ {∅} is the transition function,

5 q0 ∈ Q is the start state, and

6 F ⊆ Q is the set of accept states.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 54 / 56

Deterministic Context-Free Languages

Deterministic Context-Free Languages

Definition (DPDA (确定型下推自动机))

A deterministic pushdown automaton (DPDA) is a 6-tuple

(Q,Σ,Γ, δ, q0, F), where

1 Q is a finite set of states,

2 Σ is a finite set called the input alphabet,

3 Γ is a finite set called the stack alphabet,

4 δ : Q× Σε × Γε → (Q× Γε) ∪ {∅} is the transition function,

5 q0 ∈ Q is the start state, and

6 F ⊆ Q is the set of accept states.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 54 / 56

Deterministic Context-Free Languages

Deterministic Context-Free Languages

Definition (DPDA (确定型下推自动机))

A deterministic pushdown automaton (DPDA) is a 6-tuple

(Q,Σ,Γ, δ, q0, F), where

The transition function δ must satisfy the following condition:

For every q ∈ Q, a ∈ Σ and x ∈ Γ, exactly one of the values

δ(q, a, x),

δ(q, a, ε),

δ(q, ε, x),

δ(q, ε, ε)

is not ∅.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 55 / 56

Deterministic Context-Free Languages

Deterministic Context-Free Languages

Definition (DPDA (确定型下推自动机))

A deterministic pushdown automaton (DPDA) is a 6-tuple

(Q,Σ,Γ, δ, q0, F), where

The transition function δ must satisfy the following condition:

For every q ∈ Q, a ∈ Σ and x ∈ Γ, exactly one of the values

δ(q, a, x),

δ(q, a, ε),

δ(q, ε, x),

δ(q, ε, ε)

is not ∅.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 55 / 56

Deterministic Context-Free Languages

Deterministic Context-Free Languages

Definition (DPDA (确定型下推自动机))

A deterministic pushdown automaton (DPDA) is a 6-tuple

(Q,Σ,Γ, δ, q0, F), where

The transition function δ must satisfy the following condition:

For every q ∈ Q, a ∈ Σ and x ∈ Γ, exactly one of the values

δ(q, a, x),

δ(q, a, ε),

δ(q, ε, x),

δ(q, ε, ε)

is not ∅.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 55 / 56

Deterministic Context-Free Languages

Deterministic Context-Free Languages

Definition (DPDA (确定型下推自动机))

A deterministic pushdown automaton (DPDA) is a 6-tuple

(Q,Σ,Γ, δ, q0, F), where

The transition function δ must satisfy the following condition:

For every q ∈ Q, a ∈ Σ and x ∈ Γ, exactly one of the values

δ(q, a, x),

δ(q, a, ε),

δ(q, ε, x),

δ(q, ε, ε)

is not ∅.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 55 / 56

Deterministic Context-Free Languages

Deterministic Context-Free Languages

Definition (DPDA (确定型下推自动机))

A deterministic pushdown automaton (DPDA) is a 6-tuple

(Q,Σ,Γ, δ, q0, F), where

The transition function δ must satisfy the following condition:

For every q ∈ Q, a ∈ Σ and x ∈ Γ, exactly one of the values

δ(q, a, x),

δ(q, a, ε),

δ(q, ε, x),

δ(q, ε, ε)

is not ∅.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 55 / 56

Deterministic Context-Free Languages

Deterministic Context-Free Languages

Definition (DPDA (确定型下推自动机))

A deterministic pushdown automaton (DPDA) is a 6-tuple

(Q,Σ,Γ, δ, q0, F), where

The transition function δ must satisfy the following condition:

For every q ∈ Q, a ∈ Σ and x ∈ Γ, exactly one of the values

δ(q, a, x),

δ(q, a, ε),

δ(q, ε, x),

δ(q, ε, ε)

is not ∅.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 55 / 56

Deterministic Context-Free Languages

Deterministic Context-Free Languages

Definition (DPDA (确定型下推自动机))

A deterministic pushdown automaton (DPDA) is a 6-tuple

(Q,Σ,Γ, δ, q0, F), where

The transition function δ must satisfy the following condition:

For every q ∈ Q, a ∈ Σ and x ∈ Γ, exactly one of the values

δ(q, a, x),

δ(q, a, ε),

δ(q, ε, x),

δ(q, ε, ε)

is not ∅.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 55 / 56

Deterministic Context-Free Languages

Deterministic Context-Free Languages

Definition (DPDA (确定型下推自动机))

A deterministic pushdown automaton (DPDA) is a 6-tuple

(Q,Σ,Γ, δ, q0, F), where

The transition function δ must satisfy the following condition:

For every q ∈ Q, a ∈ Σ and x ∈ Γ, exactly one of the values

δ(q, a, x),

δ(q, a, ε),

δ(q, ε, x),

δ(q, ε, ε)

is not ∅.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 55 / 56

Deterministic Context-Free Languages

Deterministic Context-Free Languages

Definition (DPDA (确定型下推自动机))

A deterministic pushdown automaton (DPDA) is a 6-tuple

(Q,Σ,Γ, δ, q0, F), where

The transition function δ must satisfy the following condition:

For every q ∈ Q, a ∈ Σ and x ∈ Γ, exactly one of the values

δ(q, a, x),

δ(q, a, ε),

δ(q, ε, x),

δ(q, ε, ε)

is not ∅.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 55 / 56

Deterministic Context-Free Languages

Deterministic Context-Free Languages

Theorem
The class of DCFLs is closed under complementation.

This theorem implies that some CFLs are not DCFLs. Any CFL whose

complement isn’t a CFL isn’t a DCFL.

Example

A = {aibjck|i 6= j or j 6= k where i, j, k ≥ 0} is a CFL but not a DCFL.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 56 / 56

Deterministic Context-Free Languages

Deterministic Context-Free Languages

Theorem
The class of DCFLs is closed under complementation.

This theorem implies that some CFLs are not DCFLs. Any CFL whose

complement isn’t a CFL isn’t a DCFL.

Example

A = {aibjck|i 6= j or j 6= k where i, j, k ≥ 0} is a CFL but not a DCFL.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 56 / 56

Deterministic Context-Free Languages

Deterministic Context-Free Languages

Theorem
The class of DCFLs is closed under complementation.

This theorem implies that some CFLs are not DCFLs. Any CFL whose

complement isn’t a CFL isn’t a DCFL.

Example

A = {aibjck|i 6= j or j 6= k where i, j, k ≥ 0} is a CFL but not a DCFL.

Yajun Yang (TJU) 2 Context-Free Languages (Part 2 of 2) 2016 56 / 56

	Context-Free Grammars
	Formal Definition of a Context-Free Grammar
	Examples of a Context-Free Grammar
	Designing Context-Free Grammars
	Ambiguity
	Chomsky Normal Form

	Pushdown Automata
	Formal Definition of a Pushdown Automaton
	Examples of Pushdown Automata
	Equivalence With Context-Free Grammars

	Non-Context-Free Languages
	The Pumping Lemma for Context-Free Languages

	Deterministic Context-Free Languages

