
1 Regular Languages
(Part 2 of 2)

Yajun Yang

yjyang@tju.edu.cn

School of Computer Science and Technology

Tianjin University

2015
图形标志
Seal

天津大学大学图形标志是天津大学 VIS 的重要组成部分，既是形象的外在展示，也

是自我身份的内在认同，更体现了天津大学的办学理念和特色、承载文化精神并映

射文化内涵。

天津大学标志形象基本元素由图形标志和字体标志两部分组成，其中图形标志是

其核心元素。图形标志核心图形为盾形，源自天津大学建校初期（北洋大学）图形

标志，为西方大学图形标志的传统样式，体现了当时“西学为用”的指导思想，也

反映出天津大学的悠久历史和尊贵感。盾形中篆书“北洋”，笔画凝炼劲挺，圆健

美观，表现了天津大学源远流长的历史。“1895”为天津大学创建年份。图形标志

外沿齿状修饰边象征天津大学是一所以工为主 , 理、工、文、管相结合的综合性大学。

英文校名和毛体中文校名沿圆弧排列。图形标志色彩为“北洋蓝”，是天津大学校色，

蓝色代表理性、沉稳、效率、科技。

A1.1.1 A1.1 图形标志 Seal

A1.1.1 图形标志 Seal

Outline

1 Regular Expressions

2 Nonregular Languages

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 2 / 69

Regular Expressions

Outline

1 Regular Expressions

Formal Definition of a Regular Expression

Equivalence With Finite Automata

2 Nonregular Languages

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 3 / 69

Regular Expressions

Regular Expressions

Arithmetic expressions

Expressions: (5 + 3)× 4

Value: 32

Regular expressions

Expressions: (0 ∪ 1)0∗

Value: a language

0: {0}

1: {1}

(0 ∪ 1): {0} ∪ {1} = {0, 1}

0∗: {0}∗

(0 ∪ 1)0∗: (0 ∪ 1) ◦ 0∗

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 4 / 69

Regular Expressions

Regular Expressions

Arithmetic expressions

Expressions: (5 + 3)× 4

Value: 32

Regular expressions

Expressions: (0 ∪ 1)0∗

Value: a language

0: {0}

1: {1}

(0 ∪ 1): {0} ∪ {1} = {0, 1}

0∗: {0}∗

(0 ∪ 1)0∗: (0 ∪ 1) ◦ 0∗

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 4 / 69

Regular Expressions

Regular Expressions

Arithmetic expressions

Expressions: (5 + 3)× 4

Value: 32

Regular expressions

Expressions: (0 ∪ 1)0∗

Value: a language

0: {0}

1: {1}

(0 ∪ 1): {0} ∪ {1} = {0, 1}

0∗: {0}∗

(0 ∪ 1)0∗: (0 ∪ 1) ◦ 0∗

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 4 / 69

Regular Expressions

Regular Expressions

Arithmetic expressions

Expressions: (5 + 3)× 4

Value: 32

Regular expressions

Expressions: (0 ∪ 1)0∗

Value: a language

0: {0}

1: {1}

(0 ∪ 1): {0} ∪ {1} = {0, 1}

0∗: {0}∗

(0 ∪ 1)0∗: (0 ∪ 1) ◦ 0∗

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 4 / 69

Regular Expressions

Regular Expressions

Arithmetic expressions

Expressions: (5 + 3)× 4

Value: 32

Regular expressions

Expressions: (0 ∪ 1)0∗

Value: a language

0: {0}

1: {1}

(0 ∪ 1): {0} ∪ {1} = {0, 1}

0∗: {0}∗

(0 ∪ 1)0∗: (0 ∪ 1) ◦ 0∗

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 4 / 69

Regular Expressions

Regular Expressions

Arithmetic expressions

Expressions: (5 + 3)× 4

Value: 32

Regular expressions

Expressions: (0 ∪ 1)0∗

Value: a language

0: {0}

1: {1}

(0 ∪ 1): {0} ∪ {1} = {0, 1}

0∗: {0}∗

(0 ∪ 1)0∗: (0 ∪ 1) ◦ 0∗

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 4 / 69

Regular Expressions

Regular Expressions

Arithmetic expressions

Expressions: (5 + 3)× 4

Value: 32

Regular expressions

Expressions: (0 ∪ 1)0∗

Value: a language

0: {0}

1: {1}

(0 ∪ 1): {0} ∪ {1} = {0, 1}

0∗: {0}∗

(0 ∪ 1)0∗: (0 ∪ 1) ◦ 0∗

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 4 / 69

Regular Expressions

Regular Expressions: Example

Another example of a regular expression is (0 ∪ 1)∗

The value of this expression:

the language consisting of all possible strings of 0s and 1s.

If Σ = {0, 1}, we can write Σ as shorthand for the regular expression

(0 ∪ 1)

If Σ is any alphabet, the regular expression Σ describes the language

consisting of all strings of length 1 over this alphabet

Σ∗ describes the language consisting of all strings over that alphabet

Σ∗1 is the language that contains all strings that end in a 1

(0Σ∗)∪ (Σ∗1) consists of all strings that start with a 0 or end with a 1

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 5 / 69

Regular Expressions

Regular Expressions: Example

Another example of a regular expression is (0 ∪ 1)∗

The value of this expression:

the language consisting of all possible strings of 0s and 1s.

If Σ = {0, 1}, we can write Σ as shorthand for the regular expression

(0 ∪ 1)

If Σ is any alphabet, the regular expression Σ describes the language

consisting of all strings of length 1 over this alphabet

Σ∗ describes the language consisting of all strings over that alphabet

Σ∗1 is the language that contains all strings that end in a 1

(0Σ∗)∪ (Σ∗1) consists of all strings that start with a 0 or end with a 1

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 5 / 69

Regular Expressions

Regular Expressions: Example

Another example of a regular expression is (0 ∪ 1)∗

The value of this expression:

the language consisting of all possible strings of 0s and 1s.

If Σ = {0, 1}, we can write Σ as shorthand for the regular expression

(0 ∪ 1)

If Σ is any alphabet, the regular expression Σ describes the language

consisting of all strings of length 1 over this alphabet

Σ∗ describes the language consisting of all strings over that alphabet

Σ∗1 is the language that contains all strings that end in a 1

(0Σ∗)∪ (Σ∗1) consists of all strings that start with a 0 or end with a 1

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 5 / 69

Regular Expressions

Regular Expressions: Example

Another example of a regular expression is (0 ∪ 1)∗

The value of this expression:

the language consisting of all possible strings of 0s and 1s.

If Σ = {0, 1}, we can write Σ as shorthand for the regular expression

(0 ∪ 1)

If Σ is any alphabet, the regular expression Σ describes

the language

consisting of all strings of length 1 over this alphabet

Σ∗ describes the language consisting of all strings over that alphabet

Σ∗1 is the language that contains all strings that end in a 1

(0Σ∗)∪ (Σ∗1) consists of all strings that start with a 0 or end with a 1

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 5 / 69

Regular Expressions

Regular Expressions: Example

Another example of a regular expression is (0 ∪ 1)∗

The value of this expression:

the language consisting of all possible strings of 0s and 1s.

If Σ = {0, 1}, we can write Σ as shorthand for the regular expression

(0 ∪ 1)

If Σ is any alphabet, the regular expression Σ describes the language

consisting of all strings of length 1 over this alphabet

Σ∗ describes the language consisting of all strings over that alphabet

Σ∗1 is the language that contains all strings that end in a 1

(0Σ∗)∪ (Σ∗1) consists of all strings that start with a 0 or end with a 1

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 5 / 69

Regular Expressions

Regular Expressions: Example

Another example of a regular expression is (0 ∪ 1)∗

The value of this expression:

the language consisting of all possible strings of 0s and 1s.

If Σ = {0, 1}, we can write Σ as shorthand for the regular expression

(0 ∪ 1)

If Σ is any alphabet, the regular expression Σ describes the language

consisting of all strings of length 1 over this alphabet

Σ∗ describes

the language consisting of all strings over that alphabet

Σ∗1 is the language that contains all strings that end in a 1

(0Σ∗)∪ (Σ∗1) consists of all strings that start with a 0 or end with a 1

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 5 / 69

Regular Expressions

Regular Expressions: Example

Another example of a regular expression is (0 ∪ 1)∗

The value of this expression:

the language consisting of all possible strings of 0s and 1s.

If Σ = {0, 1}, we can write Σ as shorthand for the regular expression

(0 ∪ 1)

If Σ is any alphabet, the regular expression Σ describes the language

consisting of all strings of length 1 over this alphabet

Σ∗ describes the language consisting of all strings over that alphabet

Σ∗1 is the language that contains all strings that end in a 1

(0Σ∗)∪ (Σ∗1) consists of all strings that start with a 0 or end with a 1

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 5 / 69

Regular Expressions

Regular Expressions: Example

Another example of a regular expression is (0 ∪ 1)∗

The value of this expression:

the language consisting of all possible strings of 0s and 1s.

If Σ = {0, 1}, we can write Σ as shorthand for the regular expression

(0 ∪ 1)

If Σ is any alphabet, the regular expression Σ describes the language

consisting of all strings of length 1 over this alphabet

Σ∗ describes the language consisting of all strings over that alphabet

Σ∗1 is the language that

contains all strings that end in a 1

(0Σ∗)∪ (Σ∗1) consists of all strings that start with a 0 or end with a 1

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 5 / 69

Regular Expressions

Regular Expressions: Example

Another example of a regular expression is (0 ∪ 1)∗

The value of this expression:

the language consisting of all possible strings of 0s and 1s.

If Σ = {0, 1}, we can write Σ as shorthand for the regular expression

(0 ∪ 1)

If Σ is any alphabet, the regular expression Σ describes the language

consisting of all strings of length 1 over this alphabet

Σ∗ describes the language consisting of all strings over that alphabet

Σ∗1 is the language that contains all strings that end in a 1

(0Σ∗)∪ (Σ∗1) consists of all strings that start with a 0 or end with a 1

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 5 / 69

Regular Expressions

Regular Expressions: Example

Another example of a regular expression is (0 ∪ 1)∗

The value of this expression:

the language consisting of all possible strings of 0s and 1s.

If Σ = {0, 1}, we can write Σ as shorthand for the regular expression

(0 ∪ 1)

If Σ is any alphabet, the regular expression Σ describes the language

consisting of all strings of length 1 over this alphabet

Σ∗ describes the language consisting of all strings over that alphabet

Σ∗1 is the language that contains all strings that end in a 1

(0Σ∗)∪ (Σ∗1) consists of

all strings that start with a 0 or end with a 1

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 5 / 69

Regular Expressions

Regular Expressions: Example

Another example of a regular expression is (0 ∪ 1)∗

The value of this expression:

the language consisting of all possible strings of 0s and 1s.

If Σ = {0, 1}, we can write Σ as shorthand for the regular expression

(0 ∪ 1)

If Σ is any alphabet, the regular expression Σ describes the language

consisting of all strings of length 1 over this alphabet

Σ∗ describes the language consisting of all strings over that alphabet

Σ∗1 is the language that contains all strings that end in a 1

(0Σ∗)∪ (Σ∗1) consists of all strings that start with a 0 or end with a 1

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 5 / 69

Regular Expressions

Regular Expressions: Precedence

Precedence (优先级)

In regular expressions,

the star operation is done first,

followed by concatenation,

and finally union,

unless parentheses change the usual order.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 6 / 69

Regular Expressions

Regular Expressions: Precedence

Precedence (优先级)

In regular expressions,

the star operation is done first,

followed by concatenation,

and finally union,

unless parentheses change the usual order.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 6 / 69

Regular Expressions

Regular Expressions: Precedence

Precedence (优先级)

In regular expressions,

the star operation is done first,

followed by concatenation,

and finally union,

unless parentheses change the usual order.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 6 / 69

Regular Expressions

Regular Expressions: Precedence

Precedence (优先级)

In regular expressions,

the star operation is done first,

followed by concatenation,

and finally union,

unless parentheses change the usual order.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 6 / 69

Regular Expressions

Regular Expressions: Precedence

Precedence (优先级)

In regular expressions,

the star operation is done first,

followed by concatenation,

and finally union,

unless parentheses change the usual order.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 6 / 69

Regular Expressions Formal Definition of a Regular Expression

Formal Definition of a Regular Expression

Definition (regular expression 正则表达式)

Say that R is a regular expression if R is

1 a for some a in the alphabet Σ,

2 ε,

3 ∅,

4 (R1 ∪R2), where R1 and R2 are regular expressions,

5 (R1 ◦R2), where R1 and R2 are regular expressions, or

6 (R∗1), where R1 is a regular expressions.

Don’t confuse the regular expressions ε and ∅
inductive definition

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 7 / 69

Regular Expressions Formal Definition of a Regular Expression

Formal Definition of a Regular Expression

Definition (regular expression 正则表达式)

Say that R is a regular expression if R is

1 a for some a in the alphabet Σ,

2 ε,

3 ∅,

4 (R1 ∪R2), where R1 and R2 are regular expressions,

5 (R1 ◦R2), where R1 and R2 are regular expressions, or

6 (R∗1), where R1 is a regular expressions.

Don’t confuse the regular expressions ε and ∅
inductive definition

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 7 / 69

Regular Expressions Formal Definition of a Regular Expression

Formal Definition of a Regular Expression

Definition (regular expression 正则表达式)

Say that R is a regular expression if R is

1 a for some a in the alphabet Σ,

2 ε,

3 ∅,

4 (R1 ∪R2), where R1 and R2 are regular expressions,

5 (R1 ◦R2), where R1 and R2 are regular expressions, or

6 (R∗1), where R1 is a regular expressions.

Don’t confuse the regular expressions ε and ∅
inductive definition

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 7 / 69

Regular Expressions Formal Definition of a Regular Expression

Formal Definition of a Regular Expression

Definition (regular expression 正则表达式)

Say that R is a regular expression if R is

1 a for some a in the alphabet Σ,

2 ε,

3 ∅,

4 (R1 ∪R2), where R1 and R2 are regular expressions,

5 (R1 ◦R2), where R1 and R2 are regular expressions, or

6 (R∗1), where R1 is a regular expressions.

Don’t confuse the regular expressions ε and ∅
inductive definition

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 7 / 69

Regular Expressions Formal Definition of a Regular Expression

Formal Definition of a Regular Expression

Definition (regular expression 正则表达式)

Say that R is a regular expression if R is

1 a for some a in the alphabet Σ,

2 ε,

3 ∅,

4 (R1 ∪R2), where R1 and R2 are regular expressions,

5 (R1 ◦R2), where R1 and R2 are regular expressions, or

6 (R∗1), where R1 is a regular expressions.

Don’t confuse the regular expressions ε and ∅
inductive definition

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 7 / 69

Regular Expressions Formal Definition of a Regular Expression

Formal Definition of a Regular Expression

Definition (regular expression 正则表达式)

Say that R is a regular expression if R is

1 a for some a in the alphabet Σ,

2 ε,

3 ∅,

4 (R1 ∪R2), where R1 and R2 are regular expressions,

5 (R1 ◦R2), where R1 and R2 are regular expressions, or

6 (R∗1), where R1 is a regular expressions.

Don’t confuse the regular expressions ε and ∅
inductive definition

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 7 / 69

Regular Expressions Formal Definition of a Regular Expression

Formal Definition of a Regular Expression

Definition (regular expression 正则表达式)

Say that R is a regular expression if R is

1 a for some a in the alphabet Σ,

2 ε,

3 ∅,

4 (R1 ∪R2), where R1 and R2 are regular expressions,

5 (R1 ◦R2), where R1 and R2 are regular expressions, or

6 (R∗1), where R1 is a regular expressions.

Don’t confuse the regular expressions ε and ∅
inductive definition

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 7 / 69

Regular Expressions Formal Definition of a Regular Expression

Formal Definition of a Regular Expression

Definition (regular expression 正则表达式)

Say that R is a regular expression if R is

1 a for some a in the alphabet Σ,

2 ε,

3 ∅,

4 (R1 ∪R2), where R1 and R2 are regular expressions,

5 (R1 ◦R2), where R1 and R2 are regular expressions, or

6 (R∗1), where R1 is a regular expressions.

Don’t confuse the regular expressions ε and ∅

inductive definition

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 7 / 69

Regular Expressions Formal Definition of a Regular Expression

Formal Definition of a Regular Expression

Definition (regular expression 正则表达式)

Say that R is a regular expression if R is

1 a for some a in the alphabet Σ,

2 ε,

3 ∅,

4 (R1 ∪R2), where R1 and R2 are regular expressions,

5 (R1 ◦R2), where R1 and R2 are regular expressions, or

6 (R∗1), where R1 is a regular expressions.

Don’t confuse the regular expressions ε and ∅
inductive definition

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 7 / 69

Regular Expressions Formal Definition of a Regular Expression

Formal Definition of a Regular Expression

For convenience,

R+: shorthand for RR∗

R+ ∪ ε = R∗

Rk: shorthand for the concatenation of k R’s with each other

To distinguish between a regular expression R and the language that it

describes,

we write L(R) to be the language of R

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 8 / 69

Regular Expressions Formal Definition of a Regular Expression

Formal Definition of a Regular Expression

For convenience,

R+: shorthand for RR∗

R+ ∪ ε = R∗

Rk: shorthand for the concatenation of k R’s with each other

To distinguish between a regular expression R and the language that it

describes,

we write L(R) to be the language of R

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 8 / 69

Regular Expressions Formal Definition of a Regular Expression

Formal Definition of a Regular Expression

For convenience,

R+: shorthand for RR∗

R+ ∪ ε = R∗

Rk: shorthand for the concatenation of k R’s with each other

To distinguish between a regular expression R and the language that it

describes,

we write L(R) to be the language of R

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 8 / 69

Regular Expressions Formal Definition of a Regular Expression

Formal Definition of a Regular Expression

For convenience,

R+: shorthand for RR∗

R+ ∪ ε = R∗

Rk: shorthand for the concatenation of k R’s with each other

To distinguish between a regular expression R and the language that it

describes,

we write L(R) to be the language of R

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 8 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

Example
Assume that the alphabet Σ is 0, 1

1 0∗10∗

= {w | w contains a single 1}

2 Σ∗1Σ∗ = {w | w has at least one 1}

3 Σ∗001Σ∗ = {w | w contains the string 001 as a substring }

4 1∗(01+)∗ = {w | every 0 in w is followed by at least one 1}

5 (ΣΣ)∗ = {w | w is a string of even length }

6 (ΣΣΣ)∗ = {w | the length of w is a multiple of 3}

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 9 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

Example
Assume that the alphabet Σ is 0, 1

1 0∗10∗ = {w | w contains a single 1}

2 Σ∗1Σ∗ = {w | w has at least one 1}

3 Σ∗001Σ∗ = {w | w contains the string 001 as a substring }

4 1∗(01+)∗ = {w | every 0 in w is followed by at least one 1}

5 (ΣΣ)∗ = {w | w is a string of even length }

6 (ΣΣΣ)∗ = {w | the length of w is a multiple of 3}

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 9 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

Example
Assume that the alphabet Σ is 0, 1

1 0∗10∗ = {w | w contains a single 1}

2 Σ∗1Σ∗

= {w | w has at least one 1}

3 Σ∗001Σ∗ = {w | w contains the string 001 as a substring }

4 1∗(01+)∗ = {w | every 0 in w is followed by at least one 1}

5 (ΣΣ)∗ = {w | w is a string of even length }

6 (ΣΣΣ)∗ = {w | the length of w is a multiple of 3}

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 9 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

Example
Assume that the alphabet Σ is 0, 1

1 0∗10∗ = {w | w contains a single 1}

2 Σ∗1Σ∗ = {w | w has at least one 1}

3 Σ∗001Σ∗ = {w | w contains the string 001 as a substring }

4 1∗(01+)∗ = {w | every 0 in w is followed by at least one 1}

5 (ΣΣ)∗ = {w | w is a string of even length }

6 (ΣΣΣ)∗ = {w | the length of w is a multiple of 3}

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 9 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

Example
Assume that the alphabet Σ is 0, 1

1 0∗10∗ = {w | w contains a single 1}

2 Σ∗1Σ∗ = {w | w has at least one 1}

3 Σ∗001Σ∗

= {w | w contains the string 001 as a substring }

4 1∗(01+)∗ = {w | every 0 in w is followed by at least one 1}

5 (ΣΣ)∗ = {w | w is a string of even length }

6 (ΣΣΣ)∗ = {w | the length of w is a multiple of 3}

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 9 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

Example
Assume that the alphabet Σ is 0, 1

1 0∗10∗ = {w | w contains a single 1}

2 Σ∗1Σ∗ = {w | w has at least one 1}

3 Σ∗001Σ∗ = {w | w contains the string 001 as a substring }

4 1∗(01+)∗ = {w | every 0 in w is followed by at least one 1}

5 (ΣΣ)∗ = {w | w is a string of even length }

6 (ΣΣΣ)∗ = {w | the length of w is a multiple of 3}

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 9 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

Example
Assume that the alphabet Σ is 0, 1

1 0∗10∗ = {w | w contains a single 1}

2 Σ∗1Σ∗ = {w | w has at least one 1}

3 Σ∗001Σ∗ = {w | w contains the string 001 as a substring }

4 1∗(01+)∗

= {w | every 0 in w is followed by at least one 1}

5 (ΣΣ)∗ = {w | w is a string of even length }

6 (ΣΣΣ)∗ = {w | the length of w is a multiple of 3}

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 9 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

Example
Assume that the alphabet Σ is 0, 1

1 0∗10∗ = {w | w contains a single 1}

2 Σ∗1Σ∗ = {w | w has at least one 1}

3 Σ∗001Σ∗ = {w | w contains the string 001 as a substring }

4 1∗(01+)∗ = {w | every 0 in w is followed by at least one 1}

5 (ΣΣ)∗ = {w | w is a string of even length }

6 (ΣΣΣ)∗ = {w | the length of w is a multiple of 3}

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 9 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

Example
Assume that the alphabet Σ is 0, 1

1 0∗10∗ = {w | w contains a single 1}

2 Σ∗1Σ∗ = {w | w has at least one 1}

3 Σ∗001Σ∗ = {w | w contains the string 001 as a substring }

4 1∗(01+)∗ = {w | every 0 in w is followed by at least one 1}

5 (ΣΣ)∗

= {w | w is a string of even length }

6 (ΣΣΣ)∗ = {w | the length of w is a multiple of 3}

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 9 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

Example
Assume that the alphabet Σ is 0, 1

1 0∗10∗ = {w | w contains a single 1}

2 Σ∗1Σ∗ = {w | w has at least one 1}

3 Σ∗001Σ∗ = {w | w contains the string 001 as a substring }

4 1∗(01+)∗ = {w | every 0 in w is followed by at least one 1}

5 (ΣΣ)∗ = {w | w is a string of even length }

6 (ΣΣΣ)∗ = {w | the length of w is a multiple of 3}

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 9 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

Example
Assume that the alphabet Σ is 0, 1

1 0∗10∗ = {w | w contains a single 1}

2 Σ∗1Σ∗ = {w | w has at least one 1}

3 Σ∗001Σ∗ = {w | w contains the string 001 as a substring }

4 1∗(01+)∗ = {w | every 0 in w is followed by at least one 1}

5 (ΣΣ)∗ = {w | w is a string of even length }

6 (ΣΣΣ)∗

= {w | the length of w is a multiple of 3}

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 9 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

Example
Assume that the alphabet Σ is 0, 1

1 0∗10∗ = {w | w contains a single 1}

2 Σ∗1Σ∗ = {w | w has at least one 1}

3 Σ∗001Σ∗ = {w | w contains the string 001 as a substring }

4 1∗(01+)∗ = {w | every 0 in w is followed by at least one 1}

5 (ΣΣ)∗ = {w | w is a string of even length }

6 (ΣΣΣ)∗ = {w | the length of w is a multiple of 3}

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 9 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

Example
Assume that the alphabet Σ is 0, 1

7 01 ∪ 10

= {01, 10}

8 0Σ∗0∪ 1Σ∗1∪ 0∪ 1 = {w | w starts and ends with the same symbol}

9 (0 ∪ ε)1∗ = 01∗ ∪ 1∗

10 (0 ∪ ε)(1 ∪ ε) = {ε, 0, 1, 01}

11 1∗∅ = ∅

12 ∅∗ = {ε}

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 10 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

Example
Assume that the alphabet Σ is 0, 1

7 01 ∪ 10 = {01, 10}

8 0Σ∗0∪ 1Σ∗1∪ 0∪ 1 = {w | w starts and ends with the same symbol}

9 (0 ∪ ε)1∗ = 01∗ ∪ 1∗

10 (0 ∪ ε)(1 ∪ ε) = {ε, 0, 1, 01}

11 1∗∅ = ∅

12 ∅∗ = {ε}

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 10 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

Example
Assume that the alphabet Σ is 0, 1

7 01 ∪ 10 = {01, 10}

8 0Σ∗0∪ 1Σ∗1∪ 0∪ 1

= {w | w starts and ends with the same symbol}

9 (0 ∪ ε)1∗ = 01∗ ∪ 1∗

10 (0 ∪ ε)(1 ∪ ε) = {ε, 0, 1, 01}

11 1∗∅ = ∅

12 ∅∗ = {ε}

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 10 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

Example
Assume that the alphabet Σ is 0, 1

7 01 ∪ 10 = {01, 10}

8 0Σ∗0∪ 1Σ∗1∪ 0∪ 1 = {w | w starts and ends with the same symbol}

9 (0 ∪ ε)1∗ = 01∗ ∪ 1∗

10 (0 ∪ ε)(1 ∪ ε) = {ε, 0, 1, 01}

11 1∗∅ = ∅

12 ∅∗ = {ε}

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 10 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

Example
Assume that the alphabet Σ is 0, 1

7 01 ∪ 10 = {01, 10}

8 0Σ∗0∪ 1Σ∗1∪ 0∪ 1 = {w | w starts and ends with the same symbol}

9 (0 ∪ ε)1∗

= 01∗ ∪ 1∗

10 (0 ∪ ε)(1 ∪ ε) = {ε, 0, 1, 01}

11 1∗∅ = ∅

12 ∅∗ = {ε}

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 10 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

Example
Assume that the alphabet Σ is 0, 1

7 01 ∪ 10 = {01, 10}

8 0Σ∗0∪ 1Σ∗1∪ 0∪ 1 = {w | w starts and ends with the same symbol}

9 (0 ∪ ε)1∗ = 01∗ ∪ 1∗

10 (0 ∪ ε)(1 ∪ ε) = {ε, 0, 1, 01}

11 1∗∅ = ∅

12 ∅∗ = {ε}

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 10 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

Example
Assume that the alphabet Σ is 0, 1

7 01 ∪ 10 = {01, 10}

8 0Σ∗0∪ 1Σ∗1∪ 0∪ 1 = {w | w starts and ends with the same symbol}

9 (0 ∪ ε)1∗ = 01∗ ∪ 1∗

10 (0 ∪ ε)(1 ∪ ε)

= {ε, 0, 1, 01}

11 1∗∅ = ∅

12 ∅∗ = {ε}

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 10 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

Example
Assume that the alphabet Σ is 0, 1

7 01 ∪ 10 = {01, 10}

8 0Σ∗0∪ 1Σ∗1∪ 0∪ 1 = {w | w starts and ends with the same symbol}

9 (0 ∪ ε)1∗ = 01∗ ∪ 1∗

10 (0 ∪ ε)(1 ∪ ε) = {ε, 0, 1, 01}

11 1∗∅ = ∅

12 ∅∗ = {ε}

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 10 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

Example
Assume that the alphabet Σ is 0, 1

7 01 ∪ 10 = {01, 10}

8 0Σ∗0∪ 1Σ∗1∪ 0∪ 1 = {w | w starts and ends with the same symbol}

9 (0 ∪ ε)1∗ = 01∗ ∪ 1∗

10 (0 ∪ ε)(1 ∪ ε) = {ε, 0, 1, 01}

11 1∗∅

= ∅

12 ∅∗ = {ε}

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 10 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

Example
Assume that the alphabet Σ is 0, 1

7 01 ∪ 10 = {01, 10}

8 0Σ∗0∪ 1Σ∗1∪ 0∪ 1 = {w | w starts and ends with the same symbol}

9 (0 ∪ ε)1∗ = 01∗ ∪ 1∗

10 (0 ∪ ε)(1 ∪ ε) = {ε, 0, 1, 01}

11 1∗∅ = ∅

12 ∅∗ = {ε}

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 10 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

Example
Assume that the alphabet Σ is 0, 1

7 01 ∪ 10 = {01, 10}

8 0Σ∗0∪ 1Σ∗1∪ 0∪ 1 = {w | w starts and ends with the same symbol}

9 (0 ∪ ε)1∗ = 01∗ ∪ 1∗

10 (0 ∪ ε)(1 ∪ ε) = {ε, 0, 1, 01}

11 1∗∅ = ∅

12 ∅∗

= {ε}

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 10 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

Example
Assume that the alphabet Σ is 0, 1

7 01 ∪ 10 = {01, 10}

8 0Σ∗0∪ 1Σ∗1∪ 0∪ 1 = {w | w starts and ends with the same symbol}

9 (0 ∪ ε)1∗ = 01∗ ∪ 1∗

10 (0 ∪ ε)(1 ∪ ε) = {ε, 0, 1, 01}

11 1∗∅ = ∅

12 ∅∗ = {ε}

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 10 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

If we let R be any regular expression, we have the following identities.

R ∪ ∅ =

R

R ◦ ε = R

Exchanging ∅ and ε may cause the equalities to fail.

R ∪ ε may not equal R

For example, if R = 0, then L(R) = {0} but L(R ∪ ε) = {0, ε}

R ◦ ∅ may not equal R

For example, if R = 0, then L(R) = {0} but L(R ◦ ∅) = ∅

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 11 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

If we let R be any regular expression, we have the following identities.

R ∪ ∅ = R

R ◦ ε = R

Exchanging ∅ and ε may cause the equalities to fail.

R ∪ ε may not equal R

For example, if R = 0, then L(R) = {0} but L(R ∪ ε) = {0, ε}

R ◦ ∅ may not equal R

For example, if R = 0, then L(R) = {0} but L(R ◦ ∅) = ∅

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 11 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

If we let R be any regular expression, we have the following identities.

R ∪ ∅ = R

R ◦ ε =

R

Exchanging ∅ and ε may cause the equalities to fail.

R ∪ ε may not equal R

For example, if R = 0, then L(R) = {0} but L(R ∪ ε) = {0, ε}

R ◦ ∅ may not equal R

For example, if R = 0, then L(R) = {0} but L(R ◦ ∅) = ∅

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 11 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

If we let R be any regular expression, we have the following identities.

R ∪ ∅ = R

R ◦ ε = R

Exchanging ∅ and ε may cause the equalities to fail.

R ∪ ε may not equal R

For example, if R = 0, then L(R) = {0} but L(R ∪ ε) = {0, ε}

R ◦ ∅ may not equal R

For example, if R = 0, then L(R) = {0} but L(R ◦ ∅) = ∅

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 11 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

If we let R be any regular expression, we have the following identities.

R ∪ ∅ = R

R ◦ ε = R

Exchanging ∅ and ε may cause the equalities to fail.

R ∪ ε

may not equal R

For example, if R = 0, then L(R) = {0} but L(R ∪ ε) = {0, ε}

R ◦ ∅ may not equal R

For example, if R = 0, then L(R) = {0} but L(R ◦ ∅) = ∅

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 11 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

If we let R be any regular expression, we have the following identities.

R ∪ ∅ = R

R ◦ ε = R

Exchanging ∅ and ε may cause the equalities to fail.

R ∪ ε may not equal R

For example, if R = 0, then L(R) = {0} but L(R ∪ ε) = {0, ε}

R ◦ ∅ may not equal R

For example, if R = 0, then L(R) = {0} but L(R ◦ ∅) = ∅

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 11 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

If we let R be any regular expression, we have the following identities.

R ∪ ∅ = R

R ◦ ε = R

Exchanging ∅ and ε may cause the equalities to fail.

R ∪ ε may not equal R

For example, if R = 0, then L(R) = {0} but L(R ∪ ε) = {0, ε}

R ◦ ∅

may not equal R

For example, if R = 0, then L(R) = {0} but L(R ◦ ∅) = ∅

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 11 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

If we let R be any regular expression, we have the following identities.

R ∪ ∅ = R

R ◦ ε = R

Exchanging ∅ and ε may cause the equalities to fail.

R ∪ ε may not equal R

For example, if R = 0, then L(R) = {0} but L(R ∪ ε) = {0, ε}

R ◦ ∅ may not equal R

For example, if R = 0, then L(R) = {0} but L(R ◦ ∅) = ∅

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 11 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Applications

Regular expressions are useful tools in the design of compilers for

programming languages.

Elemental objects in a programming language, called tokens, such as the

variable names and constants, may be described with regular expressions.

Example (A numerical constant)

(+ ∪ - ∪ ε)(D+ ∪D+.D∗ ∪D∗.D+)

where D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Lexical analyzer : the part of a compiler that initially processes the input

program

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 12 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Applications

Regular expressions are useful tools in the design of compilers for

programming languages.

Elemental objects in a programming language, called tokens, such as the

variable names and constants, may be described with regular expressions.

Example (A numerical constant)

(+ ∪ - ∪ ε)(D+ ∪D+.D∗ ∪D∗.D+)

where D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Lexical analyzer : the part of a compiler that initially processes the input

program

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 12 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Theorem
A language is regular if and only if some regular expression describes it.

This theorem has two directions.

State and prove each direction as a separate lemma.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 13 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Theorem
A language is regular if and only if some regular expression describes it.

This theorem has two directions.

State and prove each direction as a separate lemma.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 13 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Lemma
If a language is described by a regular expression, then it is regular.

Proof idea:

We have a regular expression R describing some language A.

We show how to convert R into an NFA recognizing A.

By Corollary 1.40, if an NFA recognizes A then A is regular.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 14 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Lemma
If a language is described by a regular expression, then it is regular.

Proof idea:

We have a regular expression R describing some language A.

We show how to convert R into an NFA recognizing A.

By Corollary 1.40, if an NFA recognizes A then A is regular.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 14 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Lemma
If a language is described by a regular expression, then it is regular.

Proof idea:

We have a regular expression R describing some language A.

We show how to convert R into an NFA recognizing A.

By Corollary 1.40, if an NFA recognizes A then A is regular.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 14 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Lemma
If a language is described by a regular expression, then it is regular.

Proof idea:

We have a regular expression R describing some language A.

We show how to convert R into an NFA recognizing A.

By Corollary 1.40, if an NFA recognizes A then A is regular.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 14 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Lemma
If a language is described by a regular expression, then it is regular.

Proof idea:

We have a regular expression R describing some language A.

We show how to convert R into an NFA recognizing A.

By Corollary 1.40, if an NFA recognizes A then A is regular.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 14 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Lemma
If a language is described by a regular expression, then it is regular.

Proof.

Let’s convert R into an NFA N .

Consider the 6 cases in the formal definition of regular expressions.

1 R = a for some a ∈ Σ.

Then L(R) = {a}, and the following NFA recognizes L(R).
a

N = ({q1, q2},Σ, δ, q1, {q2}), where δ(q1, a) = {q2} and δ(r, b) = ∅
for r 6= q1 or b 6= a.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 15 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Lemma
If a language is described by a regular expression, then it is regular.

Proof.
Let’s convert R into an NFA N .

Consider the 6 cases in the formal definition of regular expressions.

1 R = a for some a ∈ Σ.

Then L(R) = {a}, and the following NFA recognizes L(R).
a

N = ({q1, q2},Σ, δ, q1, {q2}), where δ(q1, a) = {q2} and δ(r, b) = ∅
for r 6= q1 or b 6= a.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 15 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Lemma
If a language is described by a regular expression, then it is regular.

Proof.
Let’s convert R into an NFA N .

Consider the 6 cases in the formal definition of regular expressions.

1 R = a for some a ∈ Σ.

Then L(R) = {a}, and the following NFA recognizes L(R).
a

N = ({q1, q2},Σ, δ, q1, {q2}), where δ(q1, a) = {q2} and δ(r, b) = ∅
for r 6= q1 or b 6= a.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 15 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Lemma
If a language is described by a regular expression, then it is regular.

Proof.
Let’s convert R into an NFA N .

Consider the 6 cases in the formal definition of regular expressions.

1 R = a for some a ∈ Σ.

Then L(R) = {a}, and the following NFA recognizes L(R).
a

N = ({q1, q2},Σ, δ, q1, {q2}), where δ(q1, a) = {q2} and δ(r, b) = ∅
for r 6= q1 or b 6= a.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 15 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Lemma
If a language is described by a regular expression, then it is regular.

Proof.
Let’s convert R into an NFA N .

Consider the 6 cases in the formal definition of regular expressions.

1 R = a for some a ∈ Σ.

Then L(R) = {a}, and the following NFA recognizes L(R).

a

N = ({q1, q2},Σ, δ, q1, {q2}), where δ(q1, a) = {q2} and δ(r, b) = ∅
for r 6= q1 or b 6= a.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 15 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Lemma
If a language is described by a regular expression, then it is regular.

Proof.
Let’s convert R into an NFA N .

Consider the 6 cases in the formal definition of regular expressions.

1 R = a for some a ∈ Σ.

Then L(R) = {a}, and the following NFA recognizes L(R).
a

N = ({q1, q2},Σ, δ, q1, {q2}), where δ(q1, a) = {q2} and δ(r, b) = ∅
for r 6= q1 or b 6= a.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 15 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Lemma
If a language is described by a regular expression, then it is regular.

Proof.
Let’s convert R into an NFA N .

Consider the 6 cases in the formal definition of regular expressions.

1 R = a for some a ∈ Σ.

Then L(R) = {a}, and the following NFA recognizes L(R).
a

N = ({q1, q2},Σ, δ, q1, {q2}), where δ(q1, a) = {q2} and δ(r, b) = ∅
for r 6= q1 or b 6= a.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 15 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Lemma
If a language is described by a regular expression, then it is regular.

Proof.
2 R = ε.

Then L(R) = {ε}, and the following NFA recognizes L(R).

N = ({q1},Σ, δ, q1, {q1}), where δ(r, b) = ∅ for any r and b.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 16 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Lemma
If a language is described by a regular expression, then it is regular.

Proof.
2 R = ε.

Then L(R) = {ε}, and the following NFA recognizes L(R).

N = ({q1},Σ, δ, q1, {q1}), where δ(r, b) = ∅ for any r and b.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 16 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Lemma
If a language is described by a regular expression, then it is regular.

Proof.
2 R = ε.

Then L(R) = {ε}, and the following NFA recognizes L(R).

N = ({q1},Σ, δ, q1, {q1}), where δ(r, b) = ∅ for any r and b.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 16 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Lemma
If a language is described by a regular expression, then it is regular.

Proof.
2 R = ε.

Then L(R) = {ε}, and the following NFA recognizes L(R).

N = ({q1},Σ, δ, q1, {q1}), where δ(r, b) = ∅ for any r and b.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 16 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Lemma
If a language is described by a regular expression, then it is regular.

Proof.
3 R = ∅.

Then L(R) = ∅, and the following NFA recognizes L(R).

N = ({q},Σ, δ, q, ∅), where δ(r, b) = ∅ for any r and b.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 17 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Lemma
If a language is described by a regular expression, then it is regular.

Proof.
3 R = ∅.

Then L(R) = ∅, and the following NFA recognizes L(R).

N = ({q},Σ, δ, q, ∅), where δ(r, b) = ∅ for any r and b.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 17 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Lemma
If a language is described by a regular expression, then it is regular.

Proof.
3 R = ∅.

Then L(R) = ∅, and the following NFA recognizes L(R).

N = ({q},Σ, δ, q, ∅), where δ(r, b) = ∅ for any r and b.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 17 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Lemma
If a language is described by a regular expression, then it is regular.

Proof.
3 R = ∅.

Then L(R) = ∅, and the following NFA recognizes L(R).

N = ({q},Σ, δ, q, ∅), where δ(r, b) = ∅ for any r and b.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 17 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Lemma
If a language is described by a regular expression, then it is regular.

Proof.

3 R = R1 ∪R2

4 R = R1 ◦R2

5 R = R∗1

For these three cases, we use the constructions given in the proofs that the

class of regular languages is closed under the regular operations.

We construct the NFA for R from the NFAs for R1 and R2 (or just R1 in

case 6) and the appropriate closure construction.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 18 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Lemma
If a language is described by a regular expression, then it is regular.

Proof.
3 R = R1 ∪R2

4 R = R1 ◦R2

5 R = R∗1

For these three cases, we use the constructions given in the proofs that the

class of regular languages is closed under the regular operations.

We construct the NFA for R from the NFAs for R1 and R2 (or just R1 in

case 6) and the appropriate closure construction.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 18 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Lemma
If a language is described by a regular expression, then it is regular.

Proof.
3 R = R1 ∪R2

4 R = R1 ◦R2

5 R = R∗1

For these three cases, we use the constructions given in the proofs that the

class of regular languages is closed under the regular operations.

We construct the NFA for R from the NFAs for R1 and R2 (or just R1 in

case 6) and the appropriate closure construction.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 18 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Lemma
If a language is described by a regular expression, then it is regular.

Proof.
3 R = R1 ∪R2

4 R = R1 ◦R2

5 R = R∗1

For these three cases, we use the constructions given in the proofs that the

class of regular languages is closed under the regular operations.

We construct the NFA for R from the NFAs for R1 and R2 (or just R1 in

case 6) and the appropriate closure construction.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 18 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Lemma
If a language is described by a regular expression, then it is regular.

Proof.
3 R = R1 ∪R2

4 R = R1 ◦R2

5 R = R∗1

For these three cases, we use the constructions given in the proofs that the

class of regular languages is closed under the regular operations.

We construct the NFA for R from the NFAs for R1 and R2 (or just R1 in

case 6) and the appropriate closure construction.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 18 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Lemma
If a language is described by a regular expression, then it is regular.

Proof.
3 R = R1 ∪R2

4 R = R1 ◦R2

5 R = R∗1

For these three cases, we use the constructions given in the proofs that the

class of regular languages is closed under the regular operations.

We construct the NFA for R from the NFAs for R1 and R2 (or just R1 in

case 6) and the appropriate closure construction.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 18 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Example (Converting (ab∪a)∗ to an NFA)

a a

b
b

ab
a ε b

ab∪a
a ε bε

ε a

(ab∪a)∗ a ε bε

ε a

ε

ε

ε

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 19 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Example (Converting (ab∪a)∗ to an NFA)

a a

b
b

ab
a ε b

ab∪a
a ε bε

ε a

(ab∪a)∗ a ε bε

ε a

ε

ε

ε

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 19 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Example (Converting (ab∪a)∗ to an NFA)

a a

b
b

ab
a ε b

ab∪a
a ε bε

ε a

(ab∪a)∗ a ε bε

ε a

ε

ε

ε

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 19 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Example (Converting (ab∪a)∗ to an NFA)

a a

b
b

ab
a ε b

ab∪a
a ε bε

ε a

(ab∪a)∗ a ε bε

ε a

ε

ε

ε

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 19 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Example (Converting (ab∪a)∗ to an NFA)

a a

b
b

ab
a ε b

ab∪a
a ε bε

ε a

(ab∪a)∗ a ε bε

ε a

ε

ε

ε

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 19 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Example (Converting (a∪b)∗aba to an NFA)

a a

b
b

a∪b
ε

ε

a

b

(a∪b)∗ ε

ε

a

b

ε

ε

ε

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 20 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Example (Converting (a∪b)∗aba to an NFA)

a a

b
b

a∪b
ε

ε

a

b

(a∪b)∗ ε

ε

a

b

ε

ε

ε

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 20 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Example (Converting (a∪b)∗aba to an NFA)

a a

b
b

a∪b
ε

ε

a

b

(a∪b)∗ ε

ε

a

b

ε

ε

ε

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 20 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Example (Converting (a∪b)∗aba to an NFA)

a a

b
b

a∪b
ε

ε

a

b

(a∪b)∗ ε

ε

a

b

ε

ε

ε

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 20 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Example (Converting (a∪b)∗aba to an NFA)

aba
a ε b ε a

(a∪b)∗aba ε

ε

a

b

ε

ε

ε

a
ε b ε a

ε ε
ε

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 21 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Example (Converting (a∪b)∗aba to an NFA)

aba
a ε b ε a

(a∪b)∗aba ε

ε

a

b

ε

ε

ε

a
ε b ε a

ε ε
ε

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 21 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Lemma
If a language is regular, then it is described by a regular expression.

Proof idea
We need to show that if a language A is regular, a regular expression

describes it.

Because A is regular, it is accepted by a DFA.

A procedure for converting DFAs into equivalent regular expressions.
1 How to convert DFAs into GNFAs
2 GNFAs into regular expressions

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 22 / 69

Regular Expressions Equivalence With Finite Automata

Generalized Nondeterministic Finite Automaton

Definition (GNFA)

A generalized nondeterministic finite automaton (GNFA)

(广义非确定型有穷自动机) is a 5-tuple (Q,Σ, δ, qstart, qaccept), where

1 Q is a finite set of states,

2 Σ is a finite alphabet,

3 δ : (Q− {qaccept})× (Q− {qstart})→ R is the transition function,

where R is the collection of all regular expressions over the alphabet

Σ,

4 qstart is the start state, and

5 qaccept is the accept state.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 23 / 69

Regular Expressions Equivalence With Finite Automata

Generalized Nondeterministic Finite Automaton

Example

qstart

qaccept

ab∗

∅

b

aa

a∗ ab∪ba

ab

(aa)∗

b∗

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 24 / 69

Regular Expressions Equivalence With Finite Automata

Generalized Nondeterministic Finite Automaton

A GNFA is similar to an NFA except for the transition function.

δ : (Q− {qaccept})× (Q− {qstart})→ R

If δ(qi, qj) = R, the arrow from state qi to state qj has the regular

expression R as its label.

The domain of δ is (Q− {qaccept})× (Q− {qstart})
An arrow connects every state to every other state (including itself),

except that no arrows are coming from qaccept or going to qstart.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 25 / 69

Regular Expressions Equivalence With Finite Automata

Generalized Nondeterministic Finite Automaton

A GNFA accepts a string w in Σ∗ if w = w1w2 · · ·wk, where wi ∈ Σ∗ and

a sequence of states q0, q1, . . . , qk exists such that

1 q0 = qstart

2 qk = qaccept

3 wi ∈ L(Ri), where Ri = δ(qi−1, qi)

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 26 / 69

Regular Expressions Equivalence With Finite Automata

Converting a DFA into a GNFA

Converting a DFA into a GNFA.

1 Add a new start state with an ε arrow to the old start state

2 Add a new accept state with ε arrows from the old accept states

3 If any arrows have multiple labels (or if there are multiple arrows going

between the same two states in the same direction), we replace each

with a single arrow whose label is the union of the previous labels

4 Add arrows labeled ∅ between states that had no arrows

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 27 / 69

Regular Expressions Equivalence With Finite Automata

Converting a GNFA into a Regular Expression

Converting a GNFA into a regular expression.

Say that the GNFA has k states. Because a GNFA must have a start and

an accept state and they must be different from each other, we know that

k ≥ 2

1 If k > 2, we construct an equivalent GNFA with k − 1 states. This

step can be repeated on the new GNFA until it is reduced to two

states.

2 If k = 2, the GNFA has a single arrow that goes from the start state

to the accept state. The label of this arrow is the equivalent regular

expression.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 28 / 69

Regular Expressions Equivalence With Finite Automata

Converting a GNFA into a Regular Expression

Constructing an equivalent GNFA with one fewer state when k > 2

1 Selecting a state, ripping it out of the machine,

2 Repairing the remainder so that the same language is still recognized.

Any state will do, provided that it is not the start or accept state.

Let’s call the removed state qrip

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 29 / 69

Regular Expressions Equivalence With Finite Automata

Converting a GNFA into a Regular Expression

Constructing an equivalent GNFA with one fewer state when k > 2

1 Selecting a state, ripping it out of the machine,

2 Repairing the remainder so that the same language is still recognized.

Any state will do, provided that it is not the start or accept state.

Let’s call the removed state qrip

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 29 / 69

Regular Expressions Equivalence With Finite Automata

Converting a GNFA into a Regular Expression

Converting a DFA with 3 states to an equivalent regular expression:

Example (Stages)

3-state
DFA

5-state
GNFA

4-state
GNFA

3-state
GNFA

2-state
GNFA

regular
expression

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 30 / 69

Regular Expressions Equivalence With Finite Automata

Converting a GNFA into a Regular Expression

Constructing an equivalent GNFA with one fewer state when k > 2

After removing qrip, the new label from qi to qj is a regular expression

that describes all strings that would take the machine from qi to qj
either directly or via qrip

Example

qi

qrip

qj

R4

R1

R2

R3

qi qj
(R1)(R2)

∗(R3) ∪ (R4)

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 31 / 69

Regular Expressions Equivalence With Finite Automata

Constructing an equivalent GNFA with one fewer state

Example

qi

qrip

qj

R4

R1

R2

R3

qi qj
(R1)(R2)

∗(R3) ∪ (R4)

We make this change for each arrow going from any state qi to any

state qj , including the case where qi = qj .

The new machine recognizes the original language.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 32 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Lemma
If a language is regular, then it is described by a regular expression.

Proof.
We need to show that if a language A is regular, a regular expression

describes it.

Let M be a DFA such that L(M) = A

Convert M to a GNFA G

The procedure CONV ERT (G),

takes a GNFA and returns an equivalent regular expression

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 33 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

CONV ERT (G)

1 Let k be the number of states of G.

2 If k = 2, then G must consist of qstart, qaccept, and a single arrow

connecting them and labeled with a regular expression R. Return R.

3 If k > 2, select any state qrip ∈ Q different from qstart and qaccept and
let G′ be the GNFA (Q′,Σ, δ′, qstart, qaccept), where

Q′ = Q− {qrip}
For any qi ∈ Q′ − {qaccept} and qj ∈ Q′ − {qstart}, let
δ′(qi, qj) = (R1)(R2)∗(R3) ∪ (R4)

for R1 = δ(qi, qrip), R2 = δ(qrip, qrip), R3 = δ(qrip, qj), and

R4 = δ(qi, qj)

4 Compute CONV ERT (G′) and return this value.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 34 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Claim
For any GNFA G, CONV ERT (G) is equivalent to G.

Proof.
We prove this claim by induction on k, the number of states of the GNFA.

Basis: Prove the claim true for k = 2 states.

If G has only two states, it can have only a single arrow, which goes

from qstart to qaccept.

The regular expression label on this arrow describes all the strings

that allow G to get to the accept state.

Hence this expression is equivalent to G.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 35 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Proof.
Induction step: Assume that the claim is true for k − 1 states and use

this assumption to prove that the claim is true for k states.

We show that G and G′ recognize the same language.

Suppose that G accepts an input w.

G enters a sequence of states: qstart, q1, q2, q3, . . . , qaccept

If none of them is the removed state qrip, clearly G′ also accepts w.

The reason is that each of the new regular expressions labeling the

arrows of G′ contains the old regular expression as part of a union.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 36 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Proof.
If qrip does appear,

removing each run of consecutive qrip states forms an accepting

computation for G′.

The states qi and qj bracketing a run have a new regular expression on

the arrow between them that describes all strings taking qi to qj via

qrip on G.

So G′ accepts w.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 37 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Proof.
Conversely, suppose that G′ accepts an input w.

As each arrow between any two states qi and qj in G′ describes the

collection of strings taking qi to qj in G, either directly or via qrip,

G must also accept w.

Thus G and G′ are equivalent.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 38 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Proof.
The induction hypothesis states that

when the algorithm calls itself recursively on input G′, the result is a

regular expression that is equivalent to G′

because G′ has k − 1 states.

Hence this regular expression also is equivalent to G

For any GNFA G, CONV ERT (G) is equivalent to G.

This concludes the proof of the Claim, Lemma, and Theorem.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 39 / 69

Regular Expressions Equivalence With Finite Automata

Converting a DFA into a regular expression

Example (Converting a 2-state DFA into an equivalent regular expression)

1

2

(a)

a

b

a,b

s 1

2a

(b)

a

b

a∪b

ε

ε

s 1

a

(c)

a

b(a∪b)∗

ε
s

a

(d)

a∗b(a∪b)∗

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 40 / 69

Regular Expressions Equivalence With Finite Automata

Converting a DFA into a regular expression

Example (Converting a 2-state DFA into an equivalent regular expression)

1

2

(a)

a

b

a,b

s 1

2a

(b)

a

b

a∪b

ε

ε

s 1

a

(c)

a

b(a∪b)∗

ε
s

a

(d)

a∗b(a∪b)∗

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 40 / 69

Regular Expressions Equivalence With Finite Automata

Converting a DFA into a regular expression

Example (Converting a 2-state DFA into an equivalent regular expression)

1

2

(a)

a

b

a,b

s 1

2a

(b)

a

b

a∪b

ε

ε

s 1

a

(c)

a

b(a∪b)∗

ε

s

a

(d)

a∗b(a∪b)∗

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 40 / 69

Regular Expressions Equivalence With Finite Automata

Converting a DFA into a regular expression

Example (Converting a 2-state DFA into an equivalent regular expression)

1

2

(a)

a

b

a,b

s 1

2a

(b)

a

b

a∪b

ε

ε

s 1

a

(c)

a

b(a∪b)∗

ε
s

a

(d)

a∗b(a∪b)∗

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 40 / 69

Regular Expressions Equivalence With Finite Automata

Converting a DFA into a regular expression

Example (Converting a 3-state DFA to an equivalent regular expression)

1

3

2

(a)

a

b
b

a

b
a

1

s 3

2

a

(b)

a

b
b

a

b
aε ε

ε

s

3

2

a

(c)

aa∪b

ab ba∪a
a

b

ε

ε

bb

s

3

a

(d)

a(aa∪b)∗

a(aa∪b)∗ab∪b (ba∪a)(aa∪b)∗ ∪ ε

(ba∪a)(aa∪b)∗ab∪bb

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 41 / 69

Regular Expressions Equivalence With Finite Automata

Converting a DFA into a regular expression

Example (Converting a 3-state DFA to an equivalent regular expression)

1

3

2

(a)

a

b
b

a

b
a

1

s 3

2

a

(b)

a

b
b

a

b
aε ε

ε

s

3

2

a

(c)

aa∪b

ab ba∪a
a

b

ε

ε

bb

s

3

a

(d)

a(aa∪b)∗

a(aa∪b)∗ab∪b (ba∪a)(aa∪b)∗ ∪ ε

(ba∪a)(aa∪b)∗ab∪bb

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 41 / 69

Regular Expressions Equivalence With Finite Automata

Converting a DFA into a regular expression

Example (Converting a 3-state DFA to an equivalent regular expression)

1

3

2

(a)

a

b
b

a

b
a

1

s 3

2

a

(b)

a

b
b

a

b
aε ε

ε

s

3

2

a

(c)

aa∪b

ab ba∪a
a

b

ε

ε

bb

s

3

a

(d)

a(aa∪b)∗

a(aa∪b)∗ab∪b (ba∪a)(aa∪b)∗ ∪ ε

(ba∪a)(aa∪b)∗ab∪bb

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 41 / 69

Regular Expressions Equivalence With Finite Automata

Converting a DFA into a regular expression

Example (Converting a 3-state DFA to an equivalent regular expression)

1

3

2

(a)

a

b
b

a

b
a

1

s 3

2

a

(b)

a

b
b

a

b
aε ε

ε

s

3

2

a

(c)

aa∪b

ab ba∪a
a

b

ε

ε

bb

s

3

a

(d)

a(aa∪b)∗

a(aa∪b)∗ab∪b (ba∪a)(aa∪b)∗ ∪ ε

(ba∪a)(aa∪b)∗ab∪bb

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 41 / 69

Regular Expressions Equivalence With Finite Automata

Converting a DFA into a regular expression

Example

s a

(d)

(a(aa∪b)∗ab∪b)((ba∪a)(aa∪b)∗ab∪bb)∗((ba∪a)(aa∪b)∗ ∪ ε)∪a(aa∪b)∗

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 42 / 69

Nonregular Languages

Outline

1 Regular Expressions

2 Nonregular Languages

The Pumping Lemma for Regular Languages

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 43 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Nonregular Languages

To understand the power of finite automata,

you must also understand their limitations.

In this section, we show

how to prove that certain languages cannot be recognized by any

finite automaton

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 44 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Nonregular Languages

The language B = {0n1n | n ≥ 0}

The machine seems to need to remember how many 0s have been

seen so far as it reads the input.

Because the number of 0s isn’t limited, the machine will have to keep

track of an unlimited number of possibilities.

But it cannot do so with any finite number of states.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 45 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Nonregular Languages

Consider two languages over the alphabet Σ = {0, 1}

C = {w | w has an equal number of 0s and 1s}

D = {w | w has an equal number of occurrences of 01 and 10 as

substrings}

As expected, C is not regular.

But surprisingly D is regular!

Which is why we need mathematical proofs for certainty.

We show how to prove that certain languages are not regular.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 46 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Nonregular Languages

Consider two languages over the alphabet Σ = {0, 1}

C = {w | w has an equal number of 0s and 1s}

D = {w | w has an equal number of occurrences of 01 and 10 as

substrings}

As expected, C is not regular.

But surprisingly D is regular!

Which is why we need mathematical proofs for certainty.

We show how to prove that certain languages are not regular.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 46 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Nonregular Languages

Consider two languages over the alphabet Σ = {0, 1}

C = {w | w has an equal number of 0s and 1s}

D = {w | w has an equal number of occurrences of 01 and 10 as

substrings}

As expected, C is not regular.

But surprisingly D is regular!

Which is why we need mathematical proofs for certainty.

We show how to prove that certain languages are not regular.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 46 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

The pumping lemma (正则语言的泵引理)

This theorem states that all regular languages have a special property.

If we can show that a language does not have this property, we are

guaranteed that it is not regular.

The property states that all strings in the language can be “pumped”

if they are at least as long as a certain special value, called the

pumping length.

That means each such string contains a section that can be repeated

any number of times with the resulting string remaining in the

language.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 47 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

The pumping lemma (正则语言的泵引理)

This theorem states that all regular languages have a special property.

If we can show that a language does not have this property, we are

guaranteed that it is not regular.

The property states that all strings in the language can be “pumped”

if they are at least as long as a certain special value, called the

pumping length.

That means each such string contains a section that can be repeated

any number of times with the resulting string remaining in the

language.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 47 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

The pumping lemma (正则语言的泵引理)

This theorem states that all regular languages have a special property.

If we can show that a language does not have this property, we are

guaranteed that it is not regular.

The property states that all strings in the language can be “pumped”

if they are at least as long as a certain special value, called the

pumping length.

That means each such string contains a section that can be repeated

any number of times with the resulting string remaining in the

language.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 47 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

The pumping lemma (正则语言的泵引理)

This theorem states that all regular languages have a special property.

If we can show that a language does not have this property, we are

guaranteed that it is not regular.

The property states that all strings in the language can be “pumped”

if they are at least as long as a certain special value, called the

pumping length.

That means each such string contains a section that can be repeated

any number of times with the resulting string remaining in the

language.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 47 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

The pumping lemma (正则语言的泵引理)

This theorem states that all regular languages have a special property.

If we can show that a language does not have this property, we are

guaranteed that it is not regular.

The property states that all strings in the language can be “pumped”

if they are at least as long as a certain special value, called the

pumping length.

That means each such string contains a section that can be repeated

any number of times with the resulting string remaining in the

language.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 47 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Theorem (Pumping lemma 泵引理)

If A is a regular language, then there is a number p (the pumping length)

where if s is any string in A of length at least p, then s may be divided

into three pieces, s = xyz, satisfying the following conditions:

1 for each i ≥ 0, xyiz ∈ A,

2 |y| > 0, and

3 |xy| ≤ p.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 48 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Theorem (Pumping lemma 泵引理)

If A is a regular language, then there is a number p (the pumping length)

where if s is any string in A of length at least p, then s may be divided

into three pieces, s = xyz, satisfying the following conditions:

1 for each i ≥ 0, xyiz ∈ A,

2 |y| > 0, and

3 |xy| ≤ p.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 48 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Theorem (Pumping lemma 泵引理)

If A is a regular language, then there is a number p (the pumping length)

where if s is any string in A of length at least p, then s may be divided

into three pieces, s = xyz, satisfying the following conditions:

1 for each i ≥ 0, xyiz ∈ A,

2 |y| > 0, and

3 |xy| ≤ p.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 48 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Theorem (Pumping lemma 泵引理)

If A is a regular language, then there is a number p (the pumping length)

where if s is any string in A of length at least p, then s may be divided

into three pieces, s = xyz, satisfying the following conditions:

1 for each i ≥ 0, xyiz ∈ A,

2 |y| > 0, and

3 |xy| ≤ p.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 48 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Proof idea

Let M = (Q,Σ, δ, q1, F) be a DFA that recognizes A.

We assign the pumping length p to be the number of states of M .

We show that any string s in A of length at least p may be broken

into the three pieces xyz, satisfying our three conditions.

What if no strings in A are of length at least p?

Then our task is even easier because the theorem becomes vacuously

true.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 49 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Proof idea
Let M = (Q,Σ, δ, q1, F) be a DFA that recognizes A.

We assign the pumping length p to be the number of states of M .

We show that any string s in A of length at least p may be broken

into the three pieces xyz, satisfying our three conditions.

What if no strings in A are of length at least p?

Then our task is even easier because the theorem becomes vacuously

true.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 49 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Proof idea
Let M = (Q,Σ, δ, q1, F) be a DFA that recognizes A.

We assign the pumping length p to be the number of states of M .

We show that any string s in A of length at least p may be broken

into the three pieces xyz, satisfying our three conditions.

What if no strings in A are of length at least p?

Then our task is even easier because the theorem becomes vacuously

true.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 49 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Proof idea
Let M = (Q,Σ, δ, q1, F) be a DFA that recognizes A.

We assign the pumping length p to be the number of states of M .

We show that any string s in A of length at least p may be broken

into the three pieces xyz, satisfying our three conditions.

What if no strings in A are of length at least p?

Then our task is even easier because the theorem becomes vacuously

true.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 49 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Proof idea
Let M = (Q,Σ, δ, q1, F) be a DFA that recognizes A.

We assign the pumping length p to be the number of states of M .

We show that any string s in A of length at least p may be broken

into the three pieces xyz, satisfying our three conditions.

What if no strings in A are of length at least p?

Then our task is even easier because the theorem becomes vacuously

true.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 49 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Proof idea
Let M = (Q,Σ, δ, q1, F) be a DFA that recognizes A.

We assign the pumping length p to be the number of states of M .

We show that any string s in A of length at least p may be broken

into the three pieces xyz, satisfying our three conditions.

What if no strings in A are of length at least p?

Then our task is even easier because the theorem becomes vacuously

true.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 49 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Proof idea

If we let n be the length of s,

the sequence of states that M goes through

when computing with input s has length n+ 1.

Because n is at least p, we know that n+ 1 is

greater than p, the number of states of M .

Therefore, the sequence must contain a

repeated state.

This result is an example of the pigeonhole

principle.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 50 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Proof idea
If we let n be the length of s,

the sequence of states that M goes through

when computing with input s has length n+ 1.

Because n is at least p, we know that n+ 1 is

greater than p, the number of states of M .

Therefore, the sequence must contain a

repeated state.

This result is an example of the pigeonhole

principle.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 50 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Proof idea
If we let n be the length of s,

the sequence of states that M goes through

when computing with input s has length n+ 1.

Because n is at least p, we know that n+ 1 is

greater than p, the number of states of M .

Therefore, the sequence must contain a

repeated state.

This result is an example of the pigeonhole

principle.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 50 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Proof idea
If we let n be the length of s,

the sequence of states that M goes through

when computing with input s has length n+ 1.

Because n is at least p, we know that n+ 1 is

greater than p, the number of states of M .

Therefore, the sequence must contain a

repeated state.

This result is an example of the pigeonhole

principle.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 50 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Proof idea
If we let n be the length of s,

the sequence of states that M goes through

when computing with input s has length n+ 1.

Because n is at least p, we know that n+ 1 is

greater than p, the number of states of M .

Therefore, the sequence must contain a

repeated state.

This result is an example of the pigeonhole

principle.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 50 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Proof idea
If we let n be the length of s,

the sequence of states that M goes through

when computing with input s has length n+ 1.

Because n is at least p, we know that n+ 1 is

greater than p, the number of states of M .

Therefore, the sequence must contain a

repeated state.

This result is an example of the pigeonhole

principle.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 50 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Proof idea
If we let n be the length of s,

the sequence of states that M goes through

when computing with input s has length n+ 1.

Because n is at least p, we know that n+ 1 is

greater than p, the number of states of M .

Therefore, the sequence must contain a

repeated state.

This result is an example of the pigeonhole

principle.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 50 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Proof idea
The string s and the sequence of states that M goes through when

processing s. State q9 is the one that repeats.

s = a1 a2 a3 a4 a5 a6 · · · an

q1 q3 q20 q9 q17 q9 q6 q35 q13

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 51 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Proof idea

We now divide s into the three pieces x, y, and z.

Piece x is the part of s appearing before q9,

piece y is the part between the two appearances of q9,

and piece z is the remaining part of s, coming after the second

occurrence of q9.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 52 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Proof idea
We now divide s into the three pieces x, y, and z.

Piece x is the part of s appearing before q9,

piece y is the part between the two appearances of q9,

and piece z is the remaining part of s, coming after the second

occurrence of q9.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 52 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Proof idea
We now divide s into the three pieces x, y, and z.

Piece x is the part of s appearing before q9,

piece y is the part between the two appearances of q9,

and piece z is the remaining part of s, coming after the second

occurrence of q9.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 52 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Proof idea
We now divide s into the three pieces x, y, and z.

Piece x is the part of s appearing before q9,

piece y is the part between the two appearances of q9,

and piece z is the remaining part of s, coming after the second

occurrence of q9.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 52 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Proof idea
We now divide s into the three pieces x, y, and z.

Piece x is the part of s appearing before q9,

piece y is the part between the two appearances of q9,

and piece z is the remaining part of s, coming after the second

occurrence of q9.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 52 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Example (Showing how the strings x, y, and z affect M)

So x takes M from the state q1 to q9, y takes M from q9 back to q9, and

z takes M from q9 to the accept state q13.

M

q1

q9

q13
x

y

z

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 53 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Proof.

Let M = (Q,Σ, δ, q1, F) be a DFA recognizing A and p be the number of

states of M .

Let s = a1a2 · · · an be a string in A of length n, where n ≥ p.

Let r1, · · · , rn+1 be the sequence of states that M enters while

processing s, so ri+1 = δ(ri, ai) for 1 ≤ i ≤ n.

This sequence has length n+ 1, which is at least p+ 1.

Among the first p+ 1 elements in the sequence, two must be the

same state, by the pigeonhole principle

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 54 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Proof.
Let M = (Q,Σ, δ, q1, F) be a DFA recognizing A and p be the number of

states of M .

Let s = a1a2 · · · an be a string in A of length n, where n ≥ p.

Let r1, · · · , rn+1 be the sequence of states that M enters while

processing s, so ri+1 = δ(ri, ai) for 1 ≤ i ≤ n.

This sequence has length n+ 1, which is at least p+ 1.

Among the first p+ 1 elements in the sequence, two must be the

same state, by the pigeonhole principle

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 54 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Proof.
Let M = (Q,Σ, δ, q1, F) be a DFA recognizing A and p be the number of

states of M .

Let s = a1a2 · · · an be a string in A of length n, where n ≥ p.

Let r1, · · · , rn+1 be the sequence of states that M enters while

processing s, so ri+1 = δ(ri, ai) for 1 ≤ i ≤ n.

This sequence has length n+ 1, which is at least p+ 1.

Among the first p+ 1 elements in the sequence, two must be the

same state, by the pigeonhole principle

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 54 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Proof.
Let M = (Q,Σ, δ, q1, F) be a DFA recognizing A and p be the number of

states of M .

Let s = a1a2 · · · an be a string in A of length n, where n ≥ p.

Let r1, · · · , rn+1 be the sequence of states that M enters while

processing s, so ri+1 = δ(ri, ai) for 1 ≤ i ≤ n.

This sequence has length n+ 1, which is at least p+ 1.

Among the first p+ 1 elements in the sequence, two must be the

same state, by the pigeonhole principle

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 54 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Proof.
Let M = (Q,Σ, δ, q1, F) be a DFA recognizing A and p be the number of

states of M .

Let s = a1a2 · · · an be a string in A of length n, where n ≥ p.

Let r1, · · · , rn+1 be the sequence of states that M enters while

processing s, so ri+1 = δ(ri, ai) for 1 ≤ i ≤ n.

This sequence has length n+ 1, which is at least p+ 1.

Among the first p+ 1 elements in the sequence, two must be the

same state, by the pigeonhole principle

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 54 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Proof.
Let M = (Q,Σ, δ, q1, F) be a DFA recognizing A and p be the number of

states of M .

Let s = a1a2 · · · an be a string in A of length n, where n ≥ p.

Let r1, · · · , rn+1 be the sequence of states that M enters while

processing s, so ri+1 = δ(ri, ai) for 1 ≤ i ≤ n.

This sequence has length n+ 1, which is at least p+ 1.

Among the first p+ 1 elements in the sequence, two must be the

same state, by the pigeonhole principle

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 54 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Proof.

We call the first of these rj and the second rl.

Because rl occurs among the first p+ 1 places in a sequence starting

at r1, we have l ≤ p+ 1.

Now let x = a1 · · · aj−1, y = aj · · · al−1, and z = al · · · an.

As x takes M from r1 to rj , y takes M from rj to rj , and z takes

M from rj to rn+1, which is an accept state, M must accept xyiz for

i ≥ 0.

We know that j 6= l, so |y| > 0; and l ≤ p+ 1, so |xy| ≤ p.

Thus we have satisfied all conditions of the pumping lemma.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 55 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Proof.
We call the first of these rj and the second rl.

Because rl occurs among the first p+ 1 places in a sequence starting

at r1, we have l ≤ p+ 1.

Now let x = a1 · · · aj−1, y = aj · · · al−1, and z = al · · · an.

As x takes M from r1 to rj , y takes M from rj to rj , and z takes

M from rj to rn+1, which is an accept state, M must accept xyiz for

i ≥ 0.

We know that j 6= l, so |y| > 0; and l ≤ p+ 1, so |xy| ≤ p.

Thus we have satisfied all conditions of the pumping lemma.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 55 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Proof.
We call the first of these rj and the second rl.

Because rl occurs among the first p+ 1 places in a sequence starting

at r1, we have l ≤ p+ 1.

Now let x = a1 · · · aj−1, y = aj · · · al−1, and z = al · · · an.

As x takes M from r1 to rj , y takes M from rj to rj , and z takes

M from rj to rn+1, which is an accept state, M must accept xyiz for

i ≥ 0.

We know that j 6= l, so |y| > 0; and l ≤ p+ 1, so |xy| ≤ p.

Thus we have satisfied all conditions of the pumping lemma.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 55 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Proof.
We call the first of these rj and the second rl.

Because rl occurs among the first p+ 1 places in a sequence starting

at r1, we have l ≤ p+ 1.

Now let x = a1 · · · aj−1, y = aj · · · al−1, and z = al · · · an.

As x takes M from r1 to rj , y takes M from rj to rj , and z takes

M from rj to rn+1, which is an accept state, M must accept xyiz for

i ≥ 0.

We know that j 6= l, so |y| > 0; and l ≤ p+ 1, so |xy| ≤ p.

Thus we have satisfied all conditions of the pumping lemma.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 55 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Proof.
We call the first of these rj and the second rl.

Because rl occurs among the first p+ 1 places in a sequence starting

at r1, we have l ≤ p+ 1.

Now let x = a1 · · · aj−1, y = aj · · · al−1, and z = al · · · an.

As x takes M from r1 to rj , y takes M from rj to rj , and z takes

M from rj to rn+1, which is an accept state, M must accept xyiz for

i ≥ 0.

We know that j 6= l, so |y| > 0; and l ≤ p+ 1, so |xy| ≤ p.

Thus we have satisfied all conditions of the pumping lemma.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 55 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Proof.
We call the first of these rj and the second rl.

Because rl occurs among the first p+ 1 places in a sequence starting

at r1, we have l ≤ p+ 1.

Now let x = a1 · · · aj−1, y = aj · · · al−1, and z = al · · · an.

As x takes M from r1 to rj , y takes M from rj to rj , and z takes

M from rj to rn+1, which is an accept state, M must accept xyiz for

i ≥ 0.

We know that j 6= l, so |y| > 0; and l ≤ p+ 1, so |xy| ≤ p.

Thus we have satisfied all conditions of the pumping lemma.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 55 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Proof.
We call the first of these rj and the second rl.

Because rl occurs among the first p+ 1 places in a sequence starting

at r1, we have l ≤ p+ 1.

Now let x = a1 · · · aj−1, y = aj · · · al−1, and z = al · · · an.

As x takes M from r1 to rj , y takes M from rj to rj , and z takes

M from rj to rn+1, which is an accept state, M must accept xyiz for

i ≥ 0.

We know that j 6= l, so |y| > 0; and l ≤ p+ 1, so |xy| ≤ p.

Thus we have satisfied all conditions of the pumping lemma.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 55 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

To use the pumping lemma to prove that a language B is not regular,

first assume that B is regular in order to obtain a contradiction.

Then use the pumping lemma to guarantee the existence of a

pumping length p such that all strings of length p or greater in B can

be pumped.

Next, find a string s in B that has length p or greater but that cannot

be pumped.

Finally, demonstrate that s cannot be pumped by considering all ways

of dividing s into x, y, and z and, for each such division, finding a

value i where xyiz /∈ B.

The existence of s contradicts the pumping lemma if B were regular.

Hence B cannot be regular.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 56 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

To use the pumping lemma to prove that a language B is not regular,

first assume that B is regular in order to obtain a contradiction.

Then use the pumping lemma to guarantee the existence of a

pumping length p such that all strings of length p or greater in B can

be pumped.

Next, find a string s in B that has length p or greater but that cannot

be pumped.

Finally, demonstrate that s cannot be pumped by considering all ways

of dividing s into x, y, and z and, for each such division, finding a

value i where xyiz /∈ B.

The existence of s contradicts the pumping lemma if B were regular.

Hence B cannot be regular.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 56 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

To use the pumping lemma to prove that a language B is not regular,

first assume that B is regular in order to obtain a contradiction.

Then use the pumping lemma to guarantee the existence of a

pumping length p such that all strings of length p or greater in B can

be pumped.

Next, find a string s in B that has length p or greater but that cannot

be pumped.

Finally, demonstrate that s cannot be pumped by considering all ways

of dividing s into x, y, and z and, for each such division, finding a

value i where xyiz /∈ B.

The existence of s contradicts the pumping lemma if B were regular.

Hence B cannot be regular.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 56 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

To use the pumping lemma to prove that a language B is not regular,

first assume that B is regular in order to obtain a contradiction.

Then use the pumping lemma to guarantee the existence of a

pumping length p such that all strings of length p or greater in B can

be pumped.

Next, find a string s in B that has length p or greater but that cannot

be pumped.

Finally, demonstrate that s cannot be pumped by considering all ways

of dividing s into x, y, and z and, for each such division, finding a

value i where xyiz /∈ B.

The existence of s contradicts the pumping lemma if B were regular.

Hence B cannot be regular.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 56 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

To use the pumping lemma to prove that a language B is not regular,

first assume that B is regular in order to obtain a contradiction.

Then use the pumping lemma to guarantee the existence of a

pumping length p such that all strings of length p or greater in B can

be pumped.

Next, find a string s in B that has length p or greater but that cannot

be pumped.

Finally, demonstrate that s cannot be pumped by considering all ways

of dividing s into x, y, and z and, for each such division, finding a

value i where xyiz /∈ B.

The existence of s contradicts the pumping lemma if B were regular.

Hence B cannot be regular.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 56 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

To use the pumping lemma to prove that a language B is not regular,

first assume that B is regular in order to obtain a contradiction.

Then use the pumping lemma to guarantee the existence of a

pumping length p such that all strings of length p or greater in B can

be pumped.

Next, find a string s in B that has length p or greater but that cannot

be pumped.

Finally, demonstrate that s cannot be pumped by considering all ways

of dividing s into x, y, and z and, for each such division, finding a

value i where xyiz /∈ B.

The existence of s contradicts the pumping lemma if B were regular.

Hence B cannot be regular.
Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 56 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Example

Let B be the language {0n1n | n ≥ 0}. Use the pumping lemma to prove

that B is not regular.

Proof. (The proof is by contradiction.)

Assume to the contrary that B is regular.

Let p be the pumping length given by the pumping lemma.

Choose s to be the string 0p1p.

Because s is a member of B and s has length more than p, the

pumping lemma guarantees that s can be split into three pieces,

s = xyz, where for any i ≥ 0 the string xyiz is in B.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 57 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Example

Let B be the language {0n1n | n ≥ 0}. Use the pumping lemma to prove

that B is not regular.

Proof. (The proof is by contradiction.)

Assume to the contrary that B is regular.

Let p be the pumping length given by the pumping lemma.

Choose s to be the string 0p1p.

Because s is a member of B and s has length more than p, the

pumping lemma guarantees that s can be split into three pieces,

s = xyz, where for any i ≥ 0 the string xyiz is in B.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 57 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Example

Let B be the language {0n1n | n ≥ 0}. Use the pumping lemma to prove

that B is not regular.

Proof. (The proof is by contradiction.)

Assume to the contrary that B is regular.

Let p be the pumping length given by the pumping lemma.

Choose s to be the string 0p1p.

Because s is a member of B and s has length more than p, the

pumping lemma guarantees that s can be split into three pieces,

s = xyz, where for any i ≥ 0 the string xyiz is in B.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 57 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Example

Let B be the language {0n1n | n ≥ 0}. Use the pumping lemma to prove

that B is not regular.

Proof. (The proof is by contradiction.)

Assume to the contrary that B is regular.

Let p be the pumping length given by the pumping lemma.

Choose s to be the string 0p1p.

Because s is a member of B and s has length more than p, the

pumping lemma guarantees that s can be split into three pieces,

s = xyz, where for any i ≥ 0 the string xyiz is in B.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 57 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Example

Let B be the language {0n1n | n ≥ 0}. Use the pumping lemma to prove

that B is not regular.

Proof. (The proof is by contradiction.)

Assume to the contrary that B is regular.

Let p be the pumping length given by the pumping lemma.

Choose s to be the string 0p1p.

Because s is a member of B and s has length more than p, the

pumping lemma guarantees that s can be split into three pieces,

s = xyz, where for any i ≥ 0 the string xyiz is in B.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 57 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

We consider three cases to show that this result is impossible.

1 The string y consists only of 0s. In this case, the string xyyz has

more 0s than 1s and so is not a member of B, violating condition 1 of

the pumping lemma. This case is a contradiction.

2 The string y consists only of 1s. This case also gives a contradiction.

3 The string y consists of both 0s and 1s. In this case, the string xyyz

may have the same number of 0s and 1s, but they will be out of order

with some 1s before 0s. Hence it is not a member of B, which is a

contradiction.

Thus a contradiction is unavoidable if we make the assumption that B is

regular, so B is not regular.

Note that we can simplify this argument by applying condition 3 of the

pumping lemma to eliminate cases 2 and 3.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 58 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

We consider three cases to show that this result is impossible.

1 The string y consists only of 0s. In this case, the string xyyz has

more 0s than 1s and so is not a member of B, violating condition 1 of

the pumping lemma. This case is a contradiction.

2 The string y consists only of 1s. This case also gives a contradiction.

3 The string y consists of both 0s and 1s. In this case, the string xyyz

may have the same number of 0s and 1s, but they will be out of order

with some 1s before 0s. Hence it is not a member of B, which is a

contradiction.

Thus a contradiction is unavoidable if we make the assumption that B is

regular, so B is not regular.

Note that we can simplify this argument by applying condition 3 of the

pumping lemma to eliminate cases 2 and 3.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 58 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

We consider three cases to show that this result is impossible.

1 The string y consists only of 0s. In this case, the string xyyz has

more 0s than 1s and so is not a member of B, violating condition 1 of

the pumping lemma. This case is a contradiction.

2 The string y consists only of 1s. This case also gives a contradiction.

3 The string y consists of both 0s and 1s. In this case, the string xyyz

may have the same number of 0s and 1s, but they will be out of order

with some 1s before 0s. Hence it is not a member of B, which is a

contradiction.

Thus a contradiction is unavoidable if we make the assumption that B is

regular, so B is not regular.

Note that we can simplify this argument by applying condition 3 of the

pumping lemma to eliminate cases 2 and 3.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 58 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

We consider three cases to show that this result is impossible.

1 The string y consists only of 0s. In this case, the string xyyz has

more 0s than 1s and so is not a member of B, violating condition 1 of

the pumping lemma. This case is a contradiction.

2 The string y consists only of 1s. This case also gives a contradiction.

3 The string y consists of both 0s and 1s. In this case, the string xyyz

may have the same number of 0s and 1s, but they will be out of order

with some 1s before 0s. Hence it is not a member of B, which is a

contradiction.

Thus a contradiction is unavoidable if we make the assumption that B is

regular, so B is not regular.

Note that we can simplify this argument by applying condition 3 of the

pumping lemma to eliminate cases 2 and 3.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 58 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

We consider three cases to show that this result is impossible.

1 The string y consists only of 0s. In this case, the string xyyz has

more 0s than 1s and so is not a member of B, violating condition 1 of

the pumping lemma. This case is a contradiction.

2 The string y consists only of 1s. This case also gives a contradiction.

3 The string y consists of both 0s and 1s. In this case, the string xyyz

may have the same number of 0s and 1s, but they will be out of order

with some 1s before 0s. Hence it is not a member of B, which is a

contradiction.

Thus a contradiction is unavoidable if we make the assumption that B is

regular, so B is not regular.

Note that we can simplify this argument by applying condition 3 of the

pumping lemma to eliminate cases 2 and 3.
Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 58 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Example

Let C = {w | w has an equal number of 0s and 1s}. Use the pumping

lemma to prove that C is not regular.

Proof. (The proof is by contradiction.)

Assume to the contrary that C is regular.

Let p be the pumping length given by the pumping lemma.

Choose s to be the string 0p1p.

With s being a member of C and having length more than p, the

pumping lemma guarantees that s can be split into three pieces,

s = xyz, where for any i ≥ 0 the string xyiz is in C.

We would like to show that this outcome is impossible.

But wait, it is possible!

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 59 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Example

Let C = {w | w has an equal number of 0s and 1s}. Use the pumping

lemma to prove that C is not regular.

Proof. (The proof is by contradiction.)

Assume to the contrary that C is regular.

Let p be the pumping length given by the pumping lemma.

Choose s to be the string 0p1p.

With s being a member of C and having length more than p, the

pumping lemma guarantees that s can be split into three pieces,

s = xyz, where for any i ≥ 0 the string xyiz is in C.

We would like to show that this outcome is impossible.

But wait, it is possible!

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 59 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Example

Let C = {w | w has an equal number of 0s and 1s}. Use the pumping

lemma to prove that C is not regular.

Proof. (The proof is by contradiction.)

Assume to the contrary that C is regular.

Let p be the pumping length given by the pumping lemma.

Choose s to be the string 0p1p.

With s being a member of C and having length more than p, the

pumping lemma guarantees that s can be split into three pieces,

s = xyz, where for any i ≥ 0 the string xyiz is in C.

We would like to show that this outcome is impossible.

But wait, it is possible!

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 59 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Example

Let C = {w | w has an equal number of 0s and 1s}. Use the pumping

lemma to prove that C is not regular.

Proof. (The proof is by contradiction.)

Assume to the contrary that C is regular.

Let p be the pumping length given by the pumping lemma.

Choose s to be the string 0p1p.

With s being a member of C and having length more than p, the

pumping lemma guarantees that s can be split into three pieces,

s = xyz, where for any i ≥ 0 the string xyiz is in C.

We would like to show that this outcome is impossible.

But wait, it is possible!

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 59 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Example

Let C = {w | w has an equal number of 0s and 1s}. Use the pumping

lemma to prove that C is not regular.

Proof. (The proof is by contradiction.)

Assume to the contrary that C is regular.

Let p be the pumping length given by the pumping lemma.

Choose s to be the string 0p1p.

With s being a member of C and having length more than p, the

pumping lemma guarantees that s can be split into three pieces,

s = xyz, where for any i ≥ 0 the string xyiz is in C.

We would like to show that this outcome is impossible.

But wait, it is possible!

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 59 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Example

Let C = {w | w has an equal number of 0s and 1s}. Use the pumping

lemma to prove that C is not regular.

If we let x and z be the empty string and y be the string 0p1p,

then xyiz always has an equal number of 0s and 1s and hence is in C.

So it seems that s can be pumped.

Here condition 3 in the pumping lemma is useful.

It stipulates that when pumping s, it must be divided so that

|xy| ≤ p.

If |xy| ≤ p, then y must consist only of 0s, so xyyz /∈ C.

s cannot be pumped. That gives us the desired contradiction.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 60 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Example

Let C = {w | w has an equal number of 0s and 1s}. Use the pumping

lemma to prove that C is not regular.

If we let x and z be the empty string and y be the string 0p1p,

then xyiz always has an equal number of 0s and 1s and hence is in C.

So it seems that s can be pumped.

Here condition 3 in the pumping lemma is useful.

It stipulates that when pumping s, it must be divided so that

|xy| ≤ p.

If |xy| ≤ p, then y must consist only of 0s, so xyyz /∈ C.

s cannot be pumped. That gives us the desired contradiction.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 60 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Example

Let C = {w | w has an equal number of 0s and 1s}. Use the pumping

lemma to prove that C is not regular.

If we let x and z be the empty string and y be the string 0p1p,

then xyiz always has an equal number of 0s and 1s and hence is in C.

So it seems that s can be pumped.

Here condition 3 in the pumping lemma is useful.

It stipulates that when pumping s, it must be divided so that

|xy| ≤ p.

If |xy| ≤ p, then y must consist only of 0s, so xyyz /∈ C.

s cannot be pumped. That gives us the desired contradiction.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 60 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Example

Let C = {w | w has an equal number of 0s and 1s}. Use the pumping

lemma to prove that C is not regular.

If we let x and z be the empty string and y be the string 0p1p,

then xyiz always has an equal number of 0s and 1s and hence is in C.

So it seems that s can be pumped.

Here condition 3 in the pumping lemma is useful.

It stipulates that when pumping s, it must be divided so that

|xy| ≤ p.

If |xy| ≤ p, then y must consist only of 0s, so xyyz /∈ C.

s cannot be pumped. That gives us the desired contradiction.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 60 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Example

Let C = {w | w has an equal number of 0s and 1s}. Use the pumping

lemma to prove that C is not regular.

If we let x and z be the empty string and y be the string 0p1p,

then xyiz always has an equal number of 0s and 1s and hence is in C.

So it seems that s can be pumped.

Here condition 3 in the pumping lemma is useful.

It stipulates that when pumping s, it must be divided so that

|xy| ≤ p.

If |xy| ≤ p, then y must consist only of 0s, so xyyz /∈ C.

s cannot be pumped. That gives us the desired contradiction.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 60 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Example

Let C = {w | w has an equal number of 0s and 1s}. Use the pumping

lemma to prove that C is not regular.

Need more care.

If we had chosen s = (01)p instead, we would have run into trouble

because we need a string that cannot be pumped and that string can

be pumped, even taking condition 3 into account.

Can you see how to pump it?

One way to do so sets x = ε, y = 01, and z = (01)p−1.

Then xyiz ∈ C for every value of i.

If you fail on your first attempt to find a string that cannot be pumped,

don’t despair. Try another one!

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 61 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Example

Let C = {w | w has an equal number of 0s and 1s}. Use the pumping

lemma to prove that C is not regular.

Need more care.

If we had chosen s = (01)p instead, we would have run into trouble

because we need a string that cannot be pumped and that string can

be pumped, even taking condition 3 into account.

Can you see how to pump it?

One way to do so sets x = ε, y = 01, and z = (01)p−1.

Then xyiz ∈ C for every value of i.

If you fail on your first attempt to find a string that cannot be pumped,

don’t despair. Try another one!

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 61 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Example

Let C = {w | w has an equal number of 0s and 1s}. Use the pumping

lemma to prove that C is not regular.

Need more care.

If we had chosen s = (01)p instead, we would have run into trouble

because we need a string that cannot be pumped and that string can

be pumped, even taking condition 3 into account.

Can you see how to pump it?

One way to do so sets x = ε, y = 01, and z = (01)p−1.

Then xyiz ∈ C for every value of i.

If you fail on your first attempt to find a string that cannot be pumped,

don’t despair. Try another one!

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 61 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Example

Let F = {ww | w ∈ {0, 1}∗}. Use the pumping lemma to prove that F is

not regular.

Proof. (The proof is by contradiction.)

Assume to the contrary that F is regular.

Let p be the pumping length given by the pumping lemma.

Let s to be the string 0p10p1.

Because s is a member of F and s has length more than p, the

pumping lemma guarantees that s can be split into three pieces,

s = xyz, satisfying the three conditions of the lemma.

We show that this outcome is impossible.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 62 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Example

Let F = {ww | w ∈ {0, 1}∗}. Use the pumping lemma to prove that F is

not regular.

Proof. (The proof is by contradiction.)

Assume to the contrary that F is regular.

Let p be the pumping length given by the pumping lemma.

Let s to be the string 0p10p1.

Because s is a member of F and s has length more than p, the

pumping lemma guarantees that s can be split into three pieces,

s = xyz, satisfying the three conditions of the lemma.

We show that this outcome is impossible.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 62 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Example

Let F = {ww | w ∈ {0, 1}∗}. Use the pumping lemma to prove that F is

not regular.

Proof. (The proof is by contradiction.)

Assume to the contrary that F is regular.

Let p be the pumping length given by the pumping lemma.

Let s to be the string 0p10p1.

Because s is a member of F and s has length more than p, the

pumping lemma guarantees that s can be split into three pieces,

s = xyz, satisfying the three conditions of the lemma.

We show that this outcome is impossible.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 62 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Example

Let F = {ww | w ∈ {0, 1}∗}. Use the pumping lemma to prove that F is

not regular.

Proof. (The proof is by contradiction.)

Assume to the contrary that F is regular.

Let p be the pumping length given by the pumping lemma.

Let s to be the string 0p10p1.

Because s is a member of F and s has length more than p, the

pumping lemma guarantees that s can be split into three pieces,

s = xyz, satisfying the three conditions of the lemma.

We show that this outcome is impossible.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 62 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Example

Let F = {ww | w ∈ {0, 1}∗}. Use the pumping lemma to prove that F is

not regular.

Proof.
Condition 3 is once again crucial because without it we could pump s

if we let x and z be the empty string.

With condition 3 the proof follows because y must consist only of 0s,

so xyyz /∈ F

Observe that we chose s = 0p10p1 to be a string that exhibits the

“essence” of the nonregularity of F , as opposed to, say, the string 0p0p.

Even though 0p0p is a member of F , it fails to demonstrate a

contradiction because it can be pumped.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 63 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Example

Let F = {ww | w ∈ {0, 1}∗}. Use the pumping lemma to prove that F is

not regular.

Proof.
Condition 3 is once again crucial because without it we could pump s

if we let x and z be the empty string.

With condition 3 the proof follows because y must consist only of 0s,

so xyyz /∈ F

Observe that we chose s = 0p10p1 to be a string that exhibits the

“essence” of the nonregularity of F , as opposed to, say, the string 0p0p.

Even though 0p0p is a member of F , it fails to demonstrate a

contradiction because it can be pumped.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 63 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Example

Let F = {ww | w ∈ {0, 1}∗}. Use the pumping lemma to prove that F is

not regular.

Proof.
Condition 3 is once again crucial because without it we could pump s

if we let x and z be the empty string.

With condition 3 the proof follows because y must consist only of 0s,

so xyyz /∈ F

Observe that we chose s = 0p10p1 to be a string that exhibits the

“essence” of the nonregularity of F , as opposed to, say, the string 0p0p.

Even though 0p0p is a member of F , it fails to demonstrate a

contradiction because it can be pumped.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 63 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Example

Let F = {ww | w ∈ {0, 1}∗}. Use the pumping lemma to prove that F is

not regular.

Proof.
Condition 3 is once again crucial because without it we could pump s

if we let x and z be the empty string.

With condition 3 the proof follows because y must consist only of 0s,

so xyyz /∈ F

Observe that we chose s = 0p10p1 to be a string that exhibits the

“essence” of the nonregularity of F , as opposed to, say, the string 0p0p.

Even though 0p0p is a member of F , it fails to demonstrate a

contradiction because it can be pumped.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 63 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Example

Let D = {1n2 | n ≥ 0}. Use the pumping lemma to prove that D is not

regular.

Proof. (The proof is by contradiction.)

Assume to the contrary that D is regular.

Let p be the pumping length given by the pumping lemma.

Let s to be the string 1p
2
.

Because s is a member of D and s has length at least p, the pumping

lemma guarantees that s can be split into three pieces, s = xyz,

where for any i ≥ 0 the string xyiz is in D.

We show that this outcome is impossible.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 64 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Example

Let D = {1n2 | n ≥ 0}. Use the pumping lemma to prove that D is not

regular.

Proof. (The proof is by contradiction.)

Assume to the contrary that D is regular.

Let p be the pumping length given by the pumping lemma.

Let s to be the string 1p
2
.

Because s is a member of D and s has length at least p, the pumping

lemma guarantees that s can be split into three pieces, s = xyz,

where for any i ≥ 0 the string xyiz is in D.

We show that this outcome is impossible.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 64 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Example

Let D = {1n2 | n ≥ 0}. Use the pumping lemma to prove that D is not

regular.

Proof. (The proof is by contradiction.)

Assume to the contrary that D is regular.

Let p be the pumping length given by the pumping lemma.

Let s to be the string 1p
2
.

Because s is a member of D and s has length at least p, the pumping

lemma guarantees that s can be split into three pieces, s = xyz,

where for any i ≥ 0 the string xyiz is in D.

We show that this outcome is impossible.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 64 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Example

Let D = {1n2 | n ≥ 0}. Use the pumping lemma to prove that D is not

regular.

Proof. (The proof is by contradiction.)

Assume to the contrary that D is regular.

Let p be the pumping length given by the pumping lemma.

Let s to be the string 1p
2
.

Because s is a member of D and s has length at least p, the pumping

lemma guarantees that s can be split into three pieces, s = xyz,

where for any i ≥ 0 the string xyiz is in D.

We show that this outcome is impossible.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 64 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Example

Let D = {1n2 | n ≥ 0}. Use the pumping lemma to prove that D is not

regular.

Now consider the two strings xyz and xy2z.

By condition 3 of the pumping lemma, |xy| ≤ p and thus |y| ≤ p.

We have |xyz| = p2 and so |xy2z| ≤ p2 + p.

But p2 + p < p2 + 2p+ 1 = (p+ 1)2.

Condition 2 implies that |y| > 0 and so |xy2z| > p2.

Therefore, p2 < |xy2z| < (p+ 1)2. Hence this length cannot be a

perfect square itself.

So we arrive at the contradiction xy2z /∈ D and conclude that D is

not regular.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 65 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Example

Let D = {1n2 | n ≥ 0}. Use the pumping lemma to prove that D is not

regular.

Now consider the two strings xyz and xy2z.

By condition 3 of the pumping lemma, |xy| ≤ p and thus |y| ≤ p.

We have |xyz| = p2 and so |xy2z| ≤ p2 + p.

But p2 + p < p2 + 2p+ 1 = (p+ 1)2.

Condition 2 implies that |y| > 0 and so |xy2z| > p2.

Therefore, p2 < |xy2z| < (p+ 1)2. Hence this length cannot be a

perfect square itself.

So we arrive at the contradiction xy2z /∈ D and conclude that D is

not regular.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 65 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Example

Let D = {1n2 | n ≥ 0}. Use the pumping lemma to prove that D is not

regular.

Now consider the two strings xyz and xy2z.

By condition 3 of the pumping lemma, |xy| ≤ p and thus |y| ≤ p.

We have |xyz| = p2 and so |xy2z| ≤ p2 + p.

But p2 + p < p2 + 2p+ 1 = (p+ 1)2.

Condition 2 implies that |y| > 0 and so |xy2z| > p2.

Therefore, p2 < |xy2z| < (p+ 1)2. Hence this length cannot be a

perfect square itself.

So we arrive at the contradiction xy2z /∈ D and conclude that D is

not regular.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 65 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Example

Let D = {1n2 | n ≥ 0}. Use the pumping lemma to prove that D is not

regular.

Now consider the two strings xyz and xy2z.

By condition 3 of the pumping lemma, |xy| ≤ p and thus |y| ≤ p.

We have |xyz| = p2 and so |xy2z| ≤ p2 + p.

But p2 + p < p2 + 2p+ 1 = (p+ 1)2.

Condition 2 implies that |y| > 0 and so |xy2z| > p2.

Therefore, p2 < |xy2z| < (p+ 1)2. Hence this length cannot be a

perfect square itself.

So we arrive at the contradiction xy2z /∈ D and conclude that D is

not regular.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 65 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Example

Let D = {1n2 | n ≥ 0}. Use the pumping lemma to prove that D is not

regular.

Now consider the two strings xyz and xy2z.

By condition 3 of the pumping lemma, |xy| ≤ p and thus |y| ≤ p.

We have |xyz| = p2 and so |xy2z| ≤ p2 + p.

But p2 + p < p2 + 2p+ 1 = (p+ 1)2.

Condition 2 implies that |y| > 0 and so |xy2z| > p2.

Therefore, p2 < |xy2z| < (p+ 1)2. Hence this length cannot be a

perfect square itself.

So we arrive at the contradiction xy2z /∈ D and conclude that D is

not regular.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 65 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Example

Let D = {1n2 | n ≥ 0}. Use the pumping lemma to prove that D is not

regular.

Now consider the two strings xyz and xy2z.

By condition 3 of the pumping lemma, |xy| ≤ p and thus |y| ≤ p.

We have |xyz| = p2 and so |xy2z| ≤ p2 + p.

But p2 + p < p2 + 2p+ 1 = (p+ 1)2.

Condition 2 implies that |y| > 0 and so |xy2z| > p2.

Therefore, p2 < |xy2z| < (p+ 1)2. Hence this length cannot be a

perfect square itself.

So we arrive at the contradiction xy2z /∈ D and conclude that D is

not regular.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 65 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Example

Let E = {0i1j | i > j}. Use the pumping lemma to prove that D is not

regular.

Proof. (The proof is by contradiction.)

Assume to the contrary that E is regular.

Let p be the pumping length given by the pumping lemma.

Let s = 0p+11p.

Because s is a member of E and s has length at least p, the pumping

lemma guarantees that s can be split into three pieces, s = xyz,

satisfying the conditions of the pumping lemma.

We show that this outcome is impossible.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 66 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Example

Let E = {0i1j | i > j}. Use the pumping lemma to prove that D is not

regular.

Proof. (The proof is by contradiction.)

Assume to the contrary that E is regular.

Let p be the pumping length given by the pumping lemma.

Let s = 0p+11p.

Because s is a member of E and s has length at least p, the pumping

lemma guarantees that s can be split into three pieces, s = xyz,

satisfying the conditions of the pumping lemma.

We show that this outcome is impossible.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 66 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Example

Let E = {0i1j | i > j}. Use the pumping lemma to prove that D is not

regular.

Proof. (The proof is by contradiction.)

Assume to the contrary that E is regular.

Let p be the pumping length given by the pumping lemma.

Let s = 0p+11p.

Because s is a member of E and s has length at least p, the pumping

lemma guarantees that s can be split into three pieces, s = xyz,

satisfying the conditions of the pumping lemma.

We show that this outcome is impossible.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 66 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Example

Let E = {0i1j | i > j}. Use the pumping lemma to prove that D is not

regular.

Proof. (The proof is by contradiction.)

Assume to the contrary that E is regular.

Let p be the pumping length given by the pumping lemma.

Let s = 0p+11p.

Because s is a member of E and s has length at least p, the pumping

lemma guarantees that s can be split into three pieces, s = xyz,

satisfying the conditions of the pumping lemma.

We show that this outcome is impossible.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 66 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Example

Let E = {0i1j | i > j}. Use the pumping lemma to prove that D is not

regular.

By condition 3, y consists only of 0s.

Let’s examine the string xyyz to see whether it can be in E.

Adding an extra copy of y increases the number of 0s.

Increasing the number of 0s will still give a string in E.

No contradiction occurs. We need to try something else.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 67 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Example

Let E = {0i1j | i > j}. Use the pumping lemma to prove that D is not

regular.

By condition 3, y consists only of 0s.

Let’s examine the string xyyz to see whether it can be in E.

Adding an extra copy of y increases the number of 0s.

Increasing the number of 0s will still give a string in E.

No contradiction occurs. We need to try something else.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 67 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Example

Let E = {0i1j | i > j}. Use the pumping lemma to prove that D is not

regular.

By condition 3, y consists only of 0s.

Let’s examine the string xyyz to see whether it can be in E.

Adding an extra copy of y increases the number of 0s.

Increasing the number of 0s will still give a string in E.

No contradiction occurs. We need to try something else.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 67 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Example

Let E = {0i1j | i > j}. Use the pumping lemma to prove that D is not

regular.

By condition 3, y consists only of 0s.

Let’s examine the string xyyz to see whether it can be in E.

Adding an extra copy of y increases the number of 0s.

Increasing the number of 0s will still give a string in E.

No contradiction occurs. We need to try something else.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 67 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Example

Let E = {0i1j | i > j}. Use the pumping lemma to prove that D is not

regular.

The pumping lemma states that xyiz ∈ E even when i = 0,

so let’s consider the string xy0z = xz.

Because |y| > 0 and s has just one more 0 than 1,

xz cannot have more 0s than 1s.

So it cannot be a member of E. Thus we obtain a contradiction.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 68 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Example

Let E = {0i1j | i > j}. Use the pumping lemma to prove that D is not

regular.

The pumping lemma states that xyiz ∈ E even when i = 0,

so let’s consider the string xy0z = xz.

Because |y| > 0 and s has just one more 0 than 1,

xz cannot have more 0s than 1s.

So it cannot be a member of E. Thus we obtain a contradiction.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 68 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Example

Let E = {0i1j | i > j}. Use the pumping lemma to prove that D is not

regular.

The pumping lemma states that xyiz ∈ E even when i = 0,

so let’s consider the string xy0z = xz.

Because |y| > 0 and s has just one more 0 than 1,

xz cannot have more 0s than 1s.

So it cannot be a member of E. Thus we obtain a contradiction.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 68 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Example

Let E = {0i1j | i > j}. Use the pumping lemma to prove that D is not

regular.

The pumping lemma states that xyiz ∈ E even when i = 0,

so let’s consider the string xy0z = xz.

Because |y| > 0 and s has just one more 0 than 1,

xz cannot have more 0s than 1s.

So it cannot be a member of E. Thus we obtain a contradiction.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 68 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Conclusion

Regular Expressions

Formal Definitions
Equivalence With Finite
Automata

From REs to NFAs

From DFAs to REs

Nonregular Languages

The Pumping Lemma

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 69 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Conclusion

Regular Expressions

Formal Definitions
Equivalence With Finite
Automata

From REs to NFAs

From DFAs to REs

Nonregular Languages

The Pumping Lemma

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 69 / 69

Nonregular Languages The Pumping Lemma for Regular Languages

Conclusion

Regular Expressions

Formal Definitions
Equivalence With Finite
Automata

From REs to NFAs

From DFAs to REs

Nonregular Languages

The Pumping Lemma

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 69 / 69

	Regular Expressions
	Formal Definition of a Regular Expression
	Equivalence With Finite Automata

	Nonregular Languages
	The Pumping Lemma for Regular Languages

