1 Regular Languages

(Part 2 of 2)

Yajun Yang
yjyang@tju.edu.cn

School of Computer Science and Technology

Tianjin University

2015

Outline

@ Regular Expressions

© Nonregular Languages

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 2 /69

Regular Expressions

Outline

© Regular Expressions
@ Formal Definition of a Regular Expression

@ Equivalence With Finite Automata

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 3 /69

Regular Expressions

Regular Expressions

Arithmetic expressions
e Expressions: (54 3) x 4
o Value: 32

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 4/ 69

Regular Expressions

Regular Expressions

Arithmetic expressions
e Expressions: (54 3) x 4
o Value: 32

Regular expressions
e Expressions: (0 U 1)0*

@ Value: a language

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 4/ 69

Regular Expressions

Regular Expressions

Arithmetic expressions
e Expressions: (54 3) x 4 ° 0: {0}
o Value: 32

Regular expressions
e Expressions: (0 U 1)0*

@ Value: a language

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 4/ 69

Regular Expressions

Regular Expressions

Arithmetic expressions
e Expressions: (54 3) x 4 ° 0: {0}
o Value: 32 o 1: {1}
Regular expressions
e Expressions: (0 U 1)0*

@ Value: a language

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 4/ 69

Regular Expressions

Regular Expressions

Arithmetic expressions

@ Expressions: (5+3) x 4 e 0: {0}
o Value: 32 o 1: {1}
Regular expressions o (OU1): {0}u{1} ={0,1}

e Expressions: (0 U 1)0*

@ Value: a language

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 4/ 69

Regular Expressions
Regular Expressions

Arithmetic expressions

@ Expressions: (5+3) x 4 0: {0}

e Value: 32 o 1: {1}
Regular expressions o (OUl): {0}ju{l}={0,1}
e 0*: {0}

e Expressions: (0 U 1)0*

@ Value: a language

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 4/ 69

Regular Expressions
Regular Expressions

Arithmetic expressions

0: {0}
1: {1}
Regular expressions (Ou1): {0} u{l} =01}

e Expressions: (0U 1)0* o 0% {0}~
e (OUL)0O*: (OUT)o0*

e Expressions: (54 3) x 4

e Value: 32

@ Value: a language

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 4/ 69

Regular Expressions

Regular Expressions: Example

Another example of a regular expression is (0 U 1)*

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 5/ 69

Regular Expressions

Regular Expressions: Example

Another example of a regular expression is (0 U 1)*
The value of this expression:

the language consisting of all possible strings of Os and 1s.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2)

Regular Expressions

Regular Expressions: Example

Another example of a regular expression is (0 U 1)*
The value of this expression:

the language consisting of all possible strings of Os and 1s.

o If ¥ = {0, 1}, we can write ¥ as shorthand for the regular expression
(0U1)

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 5/ 69

Regular Expressions

Regular Expressions: Example

Another example of a regular expression is (0 U 1)*
The value of this expression:

the language consisting of all possible strings of Os and 1s.

o If ¥ = {0, 1}, we can write ¥ as shorthand for the regular expression
(0U1)

@ If X is any alphabet, the regular expression Y describes

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 5/ 69

Regular Expressions

Regular Expressions: Example

Another example of a regular expression is (0 U 1)*
The value of this expression:

the language consisting of all possible strings of Os and 1s.

o If ¥ = {0, 1}, we can write ¥ as shorthand for the regular expression
(0U1)

@ If X is any alphabet, the regular expression 3 describes the language

consisting of all strings of length 1 over this alphabet

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 5/ 69

Regular Expressions

Regular Expressions: Example

Another example of a regular expression is (0 U 1)*
The value of this expression:

the language consisting of all possible strings of Os and 1s.

o If ¥ = {0, 1}, we can write ¥ as shorthand for the regular expression
(Ou1)
@ If X is any alphabet, the regular expression 3 describes the language

consisting of all strings of length 1 over this alphabet

@ X* describes

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 5/ 69

Regular Expressions

Regular Expressions: Example

Another example of a regular expression is (0 U 1)*
The value of this expression:

the language consisting of all possible strings of Os and 1s.

o If ¥ = {0, 1}, we can write ¥ as shorthand for the regular expression
(Ou1)
@ If X is any alphabet, the regular expression 3 describes the language

consisting of all strings of length 1 over this alphabet

@ X* describes the language consisting of all strings over that alphabet

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 5/ 69

Regular Expressions

Regular Expressions: Example

Another example of a regular expression is (0 U 1)*
The value of this expression:

the language consisting of all possible strings of Os and 1s.

If ¥ ={0,1}, we can write ¥ as shorthand for the regular expression
(Ou1)
@ If X is any alphabet, the regular expression 3 describes the language

consisting of all strings of length 1 over this alphabet
@ X* describes the language consisting of all strings over that alphabet

>*1 is the language that

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 5/ 69

Regular Expressions

Regular Expressions: Example

Another example of a regular expression is (0 U 1)*
The value of this expression:

the language consisting of all possible strings of Os and 1s.

If ¥ ={0,1}, we can write ¥ as shorthand for the regular expression
(Ou1)
@ If X is any alphabet, the regular expression 3 describes the language

consisting of all strings of length 1 over this alphabet
@ X* describes the language consisting of all strings over that alphabet

3*1 is the language that contains all strings that end in a 1

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 5/ 69

Regular Expressions

Regular Expressions: Example

Another example of a regular expression is (0 U 1)*
The value of this expression:

the language consisting of all possible strings of Os and 1s.

If ¥ ={0,1}, we can write ¥ as shorthand for the regular expression
(Ou1)
@ If X is any alphabet, the regular expression 3 describes the language

consisting of all strings of length 1 over this alphabet
@ X* describes the language consisting of all strings over that alphabet

3*1 is the language that contains all strings that end in a 1

(0X*)U (X*1) consists of

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 5/ 69

Regular Expressions

Regular Expressions: Example

Another example of a regular expression is (0 U 1)*
The value of this expression:

the language consisting of all possible strings of Os and 1s.

If ¥ ={0,1}, we can write ¥ as shorthand for the regular expression
(Ou1)
@ If X is any alphabet, the regular expression 3 describes the language

consisting of all strings of length 1 over this alphabet
@ X* describes the language consisting of all strings over that alphabet

3*1 is the language that contains all strings that end in a 1

(0X*) U (X*1) consists of all strings that start with a 0 or end with a 1

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 5/ 69

Regular Expressions

Regular Expressions: Precedence

Precedence (£5E4K)

In regular expressions,

Yajun Yang (TJU 1 Regular Languages (Part 2 of 2 2015 6 / 69
) g

Regular Expressions

Regular Expressions: Precedence

Precedence (£5E4K)

In regular expressions,

@ the star operation is done first,

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 6 / 69

Regular Expressions

Regular Expressions: Precedence

Precedence (£5E4K)

In regular expressions,
@ the star operation is done first,

o followed by concatenation,

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 6 / 69

Regular Expressions

Regular Expressions: Precedence

Precedence (£5E4K)

In regular expressions,
@ the star operation is done first,
o followed by concatenation,

@ and finally union,

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 6 / 69

Regular Expressions

Regular Expressions: Precedence

Precedence (£5E4K)

In regular expressions,
@ the star operation is done first,
o followed by concatenation,

@ and finally union,

@ unless parentheses change the usual order.
v

2015 6 / 69

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2)

Regular Expressions Formal Definition of a Regular Expression

Formal Definition of a Regular Expression

Definition (regular expression 1ENZRiA)

Say that R is a regular expression if R is

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 7/ 69

Regular Expressions Formal Definition of a Regular Expression

Formal Definition of a Regular Expression

Definition (regular expression 1ENZRiA)

Say that R is a regular expression if R is

© a for some a in the alphabet %,

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2)

2015

7/ 69

Regular Expressions Formal Definition of a Regular Expression

Formal Definition of a Regular Expression

Definition (regular expression 1ENZRiA)

Say that R is a regular expression if R is
© a for some a in the alphabet %,
2 I

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2)

2015

7/ 69

Regular Expressions Formal Definition of a Regular Expression

Formal Definition of a Regular Expression

Definition (regular expression 1ENZRiA)

Say that R is a regular expression if R is
© a for some a in the alphabet %,
2 I
o 0,

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2)

2015

7/ 69

Regular Expressions Formal Definition of a Regular Expression

Formal Definition of a Regular Expression

Definition (regular expression 1ENZRiA)

Say that R is a regular expression if R is
© a for some a in the alphabet %,
2 I
Q 0,
Q@ (R1URy), where Ry and Ry are regular expressions,

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2)

2015

7/ 69

Regular Expressions Formal Definition of a Regular Expression

Formal Definition of a Regular Expression

Definition (regular expression 1ENZRiA)

Say that R is a regular expression if R is

© a for some a in the alphabet %,

2 o

o 0,

Q@ (R1URy), where Ry and Ry are regular expressions,

© (R0 Rs), where R; and Ry are regular expressions, or

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 7/ 69

Regular Expressions Formal Definition of a Regular Expression

Formal Definition of a Regular Expression

Definition (regular expression 1ENZRiA)

Say that R is a regular expression if R is

© a for some a in the alphabet %,

2 o

o 0,

Q@ (R1URy), where Ry and Ry are regular expressions,

R; o Ry), where R; and Ry are regular expressions, or

o (
o (

RY), where R; is a regular expressions.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2)

Regular Expressions Formal Definition of a Regular Expression

Formal Definition of a Regular Expression

Definition (regular expression IEJIZEiA)
Say that R is a regular expression if R is
© a for some a in the alphabet %,
2 o
o 0,
Q@ (R1URy), where Ry and Ry are regular expressions,
© (R0 Rs), where R; and Ry are regular expressions, or
o (

RY), where R; is a regular expressions.

Don't confuse the regular expressions ¢ and ()

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2)

Regular Expressions Formal Definition of a Regular Expression

Formal Definition of a Regular Expression

Definition (regular expression IEJIZEiA)
Say that R is a regular expression if R is
© a for some a in the alphabet %,
2 o
o 0,
Q@ (R1URy), where Ry and Ry are regular expressions,
© (R0 Rs), where R; and Ry are regular expressions, or
o (

RY), where R; is a regular expressions.

Don't confuse the regular expressions ¢ and ()

inductive definition

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2)

Regular Expressions Formal Definition of a Regular Expression

Formal Definition of a Regular Expression

For convenience,

@ R™T: shorthand for RR*

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 8/ 69

Regular Expressions Formal Definition of a Regular Expression

Formal Definition of a Regular Expression

For convenience,
@ R™T: shorthand for RR*
e RTUe=R*

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 8/ 69

Regular Expressions Formal Definition of a Regular Expression

Formal Definition of a Regular Expression

For convenience,
@ R™T: shorthand for RR*
e RTUe=R*

o RF: shorthand for the concatenation of k R's with each other

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2)

Regular Expressions Formal Definition of a Regular Expression

Formal Definition of a Regular Expression

For convenience,

e R™: shorthand for RR*

e R"Ue =R*

o RF: shorthand for the concatenation of k& R's with each other
To distinguish between a regular expression R and the language that it
describes,

e we write L(R) to be the language of R

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 8/ 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

SENE
Assume that the alphabet ¥ is 0, 1

Q 0%10*

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 9/ 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

SENE
Assume that the alphabet ¥ is 0, 1

Q 010" = {w | w contains a single 1}

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 9/ 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

SENE
Assume that the alphabet ¥ is 0, 1

Q 010" = {w | w contains a single 1}
Q Xr1¥*

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 9 /69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

SENE
Assume that the alphabet ¥ is 0, 1

Q 010" = {w | w contains a single 1}
Q@ X*1¥* = {w | w has at least one 1}

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2)

2015

9/ 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

SENE
Assume that the alphabet ¥ is 0, 1

Q 010" = {w | w contains a single 1}
Q@ X*1¥* = {w | w has at least one 1}
Q@ X*001%*

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2)

2015

9/ 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

SENE
Assume that the alphabet ¥ is 0, 1

Q 010" = {w | w contains a single 1}
Q@ X*1¥* = {w | w has at least one 1}

@ X*001%X* = {w | w contains the string 001 as a substring }

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2)

2015

9/ 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

Assume that the alphabet ¥ is 0, 1

Q 010" = {w | w contains a single 1}

Q@ X*1¥* = {w | w has at least one 1}

@ X*001%X* = {w | w contains the string 001 as a substring }
Q 1*(011)*

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 9/ 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

Assume that the alphabet ¥ is 0, 1

Q 010" = {w | w contains a single 1}
Q@ X*1¥* = {w | w has at least one 1}
@ X*001%X* = {w | w contains the string 001 as a substring }
Q 1*(017)* = {w | every 0 in w is followed by at least one 1}

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 9/ 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

Assume that the alphabet ¥ is 0, 1

Q 010" = {w | w contains a single 1}

Q@ X*1¥* = {w | w has at least one 1}

@ X*001%X* = {w | w contains the string 001 as a substring }
Q 1*(017)* = {w | every 0 in w is followed by at least one 1}
Q0 (XX)*

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 9 /69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

Assume that the alphabet ¥ is 0, 1

Q 010" = {w | w contains a single 1}
Q@ X*1¥* = {w | w has at least one 1}
@ X*001%X* = {w | w contains the string 001 as a substring }
Q 1*(017)* = {w | every 0 in w is followed by at least one 1}

Q@ (XX)* ={w | wis a string of even length }

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2)

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

Assume that the alphabet ¥ is 0, 1

Q 010" = {w | w contains a single 1}

Q@ X*1¥* = {w | w has at least one 1}

@ X*001%X* = {w | w contains the string 001 as a substring }
Q 1*(017)* = {w | every 0 in w is followed by at least one 1}
Q@ (XX)* ={w | wis a string of even length }

Q0 (XXX)*

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2)

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

Assume that the alphabet ¥ is 0, 1

Q 010" = {w | w contains a single 1}

Q@ X*1¥* = {w | w has at least one 1}

@ X*001%X* = {w | w contains the string 001 as a substring }
Q 1*(017)* = {w | every 0 in w is followed by at least one 1}
Q@ (XX)* ={w | wis a string of even length }

Q@ (XXX)* = {w | the length of w is a multiple of 3}

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2)

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

Assume that the alphabet ¥ is 0, 1

Q@ 01U10

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 10 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

Assume that the alphabet ¥ is 0, 1
@ 01U 10 = {01, 10}

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 10 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

SENE
Assume that the alphabet ¥ is 0, 1

@ 01U10 = {01,10}
Q 0X*0U1lX*1uUouUl

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2)

2015

10 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

SENE
Assume that the alphabet ¥ is 0, 1

@ 01U10 = {01,10}
Q 0X*0U1¥*1U0U1 = {w | w starts and ends with the same symbol}

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 10 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

SENE
Assume that the alphabet ¥ is 0, 1

@ 01U10 = {01,10}
Q 0X*0U1¥*1U0U1 = {w | w starts and ends with the same symbol}
Q (Oue)r*

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 10 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

SENE
Assume that the alphabet ¥ is 0, 1

@ 01U10 = {01,10}
Q 0X*0U1¥*1U0U1 = {w | w starts and ends with the same symbol}
Q@ (0U&)1* =01*U1*

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 10 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

SENE
Assume that the alphabet ¥ is 0, 1

@ 01U 10 = {01,10}

Q 0X*0U1¥*1U0U1 = {w | w starts and ends with the same symbol}
Q@ (0Ue)l* =01*U1*
@ bue)(lue)

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 10 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

SENE
Assume that the alphabet ¥ is 0, 1

@ 01U 10 = {01, 10}

Q 0X*0U1¥*1U0U1 = {w | w starts and ends with the same symbol}
Q@ (Oug)l* =01"U1*

@ (0Ue)(1ue) ={e,0,1,01}

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 10 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

SENE
Assume that the alphabet ¥ is 0, 1

@ 01U 10 = {01, 10}

Q 0X*0U1¥*1U0U1 = {w | w starts and ends with the same symbol}
Q@ (Oug)l* =01"U1*

@ (0Ue)(1ue) ={e,0,1,01}

@ 10

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 10 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

SENE
Assume that the alphabet ¥ is 0, 1

@ 01U 10 = {01, 10}

Q 0X*0U1¥*1U0U1 = {w | w starts and ends with the same symbol}
Q@ (Oug)l* =01"U1*

@ (0Ue)(1ue) ={e,0,1,01}

@ 10=0

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 10 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

Assume that the alphabet ¥ is 0, 1
@ 01U 10 = {01, 10}

Q 0X*0U1¥*1U0U1 = {w | w starts and ends with the same symbol}
Q@ (Oug)l* =01"U1*

@ (0Ue)(1ue) ={e,0,1,01}

@ 10=0

@ 0

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 10 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

Assume that the alphabet ¥ is 0, 1
@ 01U 10 = {01, 10}

Q 0X*0U1¥*1U0U1 = {w | w starts and ends with the same symbol}
Q@ (Oug)l* =01"U1*

@ (0Ue)(1ue) ={e,0,1,01}

@ 10=0

@ 0* ={e}

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 10 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

If we let R be any regular expression, we have the following identities.

e RUD=

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 11 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

If we let R be any regular expression, we have the following identities.

e RUD=R

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 11 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

If we let R be any regular expression, we have the following identities.
e RUN=R

@ Roe=

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 11 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

If we let R be any regular expression, we have the following identities.
e RUN=R
@ Roe=R

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 11 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

If we let R be any regular expression, we have the following identities.
e RUN=R
@ Roe=R

Exchanging () and € may cause the equalities to fail.

@ RUe

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 11 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

If we let R be any regular expression, we have the following identities.
e RUN=R
@ Roe=R

Exchanging () and € may cause the equalities to fail.

@ RUe may not equal R
For example, if R =0, then L(R) = {0} but L(RU¢) = {0,¢}

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 11 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

If we let R be any regular expression, we have the following identities.
e RUN=R
@ Roe=R

Exchanging () and € may cause the equalities to fail.

@ RUe may not equal R
For example, if R =0, then L(R) = {0} but L(RU¢) = {0,¢}
@ Rol)

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 11 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Examples

If we let R be any regular expression, we have the following identities.
e RUN=R
@ Roe=R
Exchanging () and € may cause the equalities to fail.
@ RUe may not equal R
For example, if R =0, then L(R) = {0} but L(RU¢) = {0,¢}
@ Ro() may not equal R
For example, if R =0, then L(R) = {0} but L(Ro0) =0

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 11 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Applications

Regular expressions are useful tools in the design of compilers for
programming languages.
Elemental objects in a programming language, called tokens, such as the

variable names and constants, may be described with regular expressions.

Example (A numerical constant)
(+U-Ue)(DTUDt.D*UD*.DY)

where D = {0,1,2,3,4,5,6,7,8,9}

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 12 / 69

Regular Expressions Formal Definition of a Regular Expression

Regular Expression: Applications

Regular expressions are useful tools in the design of compilers for
programming languages.
Elemental objects in a programming language, called tokens, such as the

variable names and constants, may be described with regular expressions.

Example (A numerical constant)
(+U-Ue)(DTUDt.D*UD*.DY)

where D = {0,1,2,3,4,5,6,7,8,9}

Lexical analyzer: the part of a compiler that initially processes the input

program

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 12 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

A language is regular if and only if some regular expression describes it.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 13 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

A language is regular if and only if some regular expression describes it.

This theorem has two directions.

State and prove each direction as a separate lemma.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 13 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

If a language is described by a regular expression, then it is regular.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 14 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

If a language is described by a regular expression, then it is regular. \

Proof idea:

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 14 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

If a language is described by a regular expression, then it is regular. \

Proof idea:

@ We have a regular expression R describing some language A.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 14 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

If a language is described by a regular expression, then it is regular. \

Proof idea:

@ We have a regular expression R describing some language A.

@ We show how to convert R into an NFA recognizing A.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 14 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

If a language is described by a regular expression, then it is regular. \

Proof idea:
@ We have a regular expression R describing some language A
@ We show how to convert R into an NFA recognizing A.

e By Corollary 1.40, if an NFA recognizes A then A is regular.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2)

2015

14 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

If a language is described by a regular expression, then it is regular.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 15 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

If a language is described by a regular expression, then it is regular.

Let's convert R into an NFA N.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 15 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

If a language is described by a regular expression, then it is regular.

Proof.
Let's convert R into an NFA N.

Consider the 6 cases in the formal definition of regular expressions.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 15 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

If a language is described by a regular expression, then it is regular.

Proof.
Let's convert R into an NFA N.

Consider the 6 cases in the formal definition of regular expressions.

@ R =a forsomea € .

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 15 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

If a language is described by a regular expression, then it is regular.

Proof.
Let's convert R into an NFA N.

Consider the 6 cases in the formal definition of regular expressions.

Q@ R =a for somea € X.
Then L(R) = {a}, and the following NFA recognizes L(R).

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 15 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

If a language is described by a regular expression, then it is regular.

Proof.
Let's convert R into an NFA N.

Consider the 6 cases in the formal definition of regular expressions.

Q@ R =a for somea € X.
Then L(R) = {a}, and the following NFA recognizes L(R).

C a C

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 15 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

If a language is described by a regular expression, then it is regular.

Proof.
Let's convert R into an NFA N.

Consider the 6 cases in the formal definition of regular expressions.

Q@ R =a for somea € X.
Then L(R) = {a}, and the following NFA recognizes L(R).

~0—-0
N = ({QIan}a 275’ q1, {CI2}), where 5(6117@) = {CI2} and (5(T7 b) = @
for r #£ q or b # a.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 15 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

If a language is described by a regular expression, then it is regular.

Q@ R=c¢.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 16 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

If a language is described by a regular expression, then it is regular.

Proof.
Q@ R=c.
Then L(R) = {¢}, and the following NFA recognizes L(R).

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 16 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

If a language is described by a regular expression, then it is regular.

Proof.
Q@ R=c.
Then L(R) = {¢}, and the following NFA recognizes L(R).

@

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 16 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

If a language is described by a regular expression, then it is regular.

Proof.
Q@ R=c.
Then L(R) = {¢}, and the following NFA recognizes L(R).

@

N=({q},%,6,q1,{q1}), where §(r,b) = () for any r and b.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 16 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

If a language is described by a regular expression, then it is regular.

Q@ R=0.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 17 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

If a language is described by a regular expression, then it is regular.

Proof.
Q@ R=0.
Then L(R) = (), and the following NFA recognizes L(R).

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 17 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

If a language is described by a regular expression, then it is regular.

Proof.
Q@ R=0.
Then L(R) = (), and the following NFA recognizes L(R).

~O

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 17 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

If a language is described by a regular expression, then it is regular.

Proof.
Q@ R=0.
Then L(R) = (), and the following NFA recognizes L(R).

~O

N = ({¢},%,9,q,0), where 6(r,b) = 0 for any r and b.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 17 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

If a language is described by a regular expression, then it is regular.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 18 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

If a language is described by a regular expression, then it is regular.

Q@ R=RiURy

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 18 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

If a language is described by a regular expression, then it is regular.

Q@ R=RiURy
Q R=RioRy

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 18 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

If a language is described by a regular expression, then it is regular.

Q@ R=RiURy
Q R=RioRy
Q@ R=R}

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 18 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

If a language is described by a regular expression, then it is regular.

Q@ R=RiURy
Q R=RioRy
Q@ R=R}

For these three cases, we use the constructions given in the proofs that the

class of regular languages is closed under the regular operations.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 18 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

If a language is described by a regular expression, then it is regular.

Q@ R=RiURy
Q R=RioRy
Q@ R=R}

For these three cases, we use the constructions given in the proofs that the
class of regular languages is closed under the regular operations.
We construct the NFA for R from the NFAs for Ry and Ry (or just R; in

case 6) and the appropriate closure construction.

2015 18 / 69

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2)

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Example (Converting (abUa)* to an NFA)

a M

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Example (Converting (abUa)* to an NFA)

a M
b —0—0

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Example (Converting (abUa)* to an NFA)

a m
b %OEQ

s 005020

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Example (Converting (abUa)* to an NFA)
a

b

ab

O—0—0
abUa Q—0O0—0—0—0
“020

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Example (Converting (abUa)* to an NFA)

a —0>0
b —020
ab
abUa 0205020
O
(abua)*

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 19 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Example (Converting (aUb)*aba to an NFA)

a

a M

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Example (Converting (aUb)*aba to an NFA)

a M
b —0—0

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Example (Converting (aUb)*aba to an NFA)

a —0O->0
b %gQ
aUb 020
> b

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Example (Converting (aUb)*aba to an NFA)

a —0%0

b —020
aUb O >0->0
020

(aUb)*

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 20 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Example (Converting (aUb)*aba to an NFA)

b 035050205020

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Example (Converting (aUb)*aba to an NFA)

b 035050205020

(aUb)*aba

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 21/ 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

If a language is regular, then it is described by a regular expression.

Proof idea

@ We need to show that if a language A is regular, a regular expression

describes it.
@ Because A is regular, it is accepted by a DFA.

@ A procedure for converting DFAs into equivalent regular expressions.

© How to convert DFAs into GNFAs
© GNFAs into regular expressions

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 22 / 69

Regular Expressions Equivalence With Finite Automata

Generalized Nondeterministic Finite Automaton

Definition (GNFA)
A generalized nondeterministic finite automaton (GNFA)

(ﬁijkﬁﬁﬁﬁﬁ% Qijj*ﬂ*) isa S'tuple (Q’ E’ 5) QStart7Qaccopt)y where

O Q is a finite set of states,

@ X is a finite alphabet,

Q 6 : (Q — {Gaccept}) X (@ — {Gstart}) — R is the transition function,
where R is the collection of all regular expressions over the alphabet

x,

Q@ (start is the start state, and

© Gaccept is the accept state.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 23 /69

Regular Expressions Equivalence With Finite Automata

Generalized Nondeterministic Finite Automaton

SENIE

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 24 / 69

Regular Expressions Equivalence With Finite Automata

Generalized Nondeterministic Finite Automaton

A GNFA is similar to an NFA except for the transition function.

@ 0: (Q - {Qaccept}> X (Q - {%tart}) - R

e If 6(¢i,q;) = R, the arrow from state ¢; to state g; has the regular

expression R as its label.
@ The domain of § is (Q — {Gaccept }) X (@ — {Gstart})

e An arrow connects every state to every other state (including itself),

o except that no arrows are coming from gaccept OF OINE tO Gstart-

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 25 / 69

Regular Expressions Equivalence With Finite Automata

Generalized Nondeterministic Finite Automaton

A GNFA accepts a string w in ¥* if w = wyws - - - wg, where w; € ¥* and

a sequence of states qg, q1, . .., g exists such that

o 40 = (start

Q g = Gaccept
@ w; € L(R;), where R; = §(qi—1,4;)

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 26 / 69

Regular Expressions Equivalence With Finite Automata

Converting a DFA into a GNFA

Converting a DFA into a GNFA.
© Add a new start state with an ¢ arrow to the old start state
@ Add a new accept state with e arrows from the old accept states

@ If any arrows have multiple labels (or if there are multiple arrows going
between the same two states in the same direction), we replace each

with a single arrow whose label is the union of the previous labels

@ Add arrows labeled @ between states that had no arrows

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 27 / 69

Regular Expressions Equivalence With Finite Automata

Converting a GNFA into a Regular Expression

Converting a GNFA into a regular expression.
Say that the GNFA has k states. Because a GNFA must have a start and
an accept state and they must be different from each other, we know that
k>2
@ If k > 2, we construct an equivalent GNFA with k — 1 states. This
step can be repeated on the new GNFA until it is reduced to two
states.
@ If £ =2, the GNFA has a single arrow that goes from the start state
to the accept state. The label of this arrow is the equivalent regular

expression.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 28 / 69

Regular Expressions Equivalence With Finite Automata

Converting a GNFA into a Regular Expression

Constructing an equivalent GNFA with one fewer state when k > 2
@ Selecting a state, ripping it out of the machine,

@ Repairing the remainder so that the same language is still recognized.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 29 / 69

Regular Expressions Equivalence With Finite Automata

Converting a GNFA into a Regular Expression

Constructing an equivalent GNFA with one fewer state when k > 2
@ Selecting a state, ripping it out of the machine,

@ Repairing the remainder so that the same language is still recognized.

@ Any state will do, provided that it is not the start or accept state.

@ Let’s call the removed state gyip,

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 29 / 69

Equivalence With Finite Automata

Regular Expressions

Converting a GNFA into a Regular Expression

Converting a DFA with 3 states to an equivalent regular expression:

Example (Stages)

3-state > 5-state > 4-state
DFA GNFA GNFA

2-state < 3-state
GNFA GNFA

regular
expression

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 30/ 69

Regular Expressions Equivalence With Finite Automata

Converting a GNFA into a Regular Expression

Constructing an equivalent GNFA with one fewer state when k > 2

o After removing ¢.ip, the new label from ¢; to g; is a regular expression
that describes all strings that would take the machine from ¢; to g;

either directly or via gip

Example

Ry

@ @ 0 (Rl)(RQ)*(R3)U(R4)@
R
A

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 31/ 69

R

v

Regular Expressions Equivalence With Finite Automata

Constructing an equivalent GNFA with one fewer state

Ry

@ ; @ “ (R1)(R2)"(Rs) U (R4) @
2

Rl RS

@ We make this change for each arrow going from any state ¢; to any

state ¢;, including the case where ¢; = ¢;.

@ The new machine recognizes the original language.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 32 /69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

If a language is regular, then it is described by a regular expression.

Proof.
@ We need to show that if a language A is regular, a regular expression

describes it.
@ Let M be a DFA such that L(M) = A

@ Convert M to a GNFA G
@ The procedure CONV ERT(G),

o takes a GNFA and returns an equivalent regular expression

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 33 /69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

CONVERT(G)
@ Let k be the number of states of G.

Q If k =2, then G must consist of gstart, Gaccept, and a single arrow
connecting them and labeled with a regular expression R. Return R.
@ If £ > 2, select any state gyi, € @ different from ggtart and gaccept and
let G’ be the GNFA (Q', X, ¢, gstart, Gaccept), Where
° Q' =Q—{qip}
o Forany ¢; € Q" — {Gaccept} and qj € Q" — {Gstart } let
' (¢i,¢5) = (R1)(R2)"(R3) U (Ra)
for R = (i, Grip), R2 = 0(rip, Grip), B3 = (arip, ¢;), and
Ry = 6(qi, q5)
Q Compute CONV ERT(G’) and return this value.

V.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 34 /69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

For any GNFA G, CONV ERT(G) is equivalent to G.

Proof.
We prove this claim by induction on k, the number of states of the GNFA.

Basis: Prove the claim true for k = 2 states.
o If G has only two states, it can have only a single arrow, which goes
from gstart O Gaccept -
@ The regular expression label on this arrow describes all the strings

that allow G to get to the accept state.

@ Hence this expression is equivalent to G.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 35/ 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Proof.
Induction step: Assume that the claim is true for k — 1 states and use

this assumption to prove that the claim is true for k states.
We show that G and G’ recognize the same language.
@ Suppose that G accepts an input w.

o G enters a sequence of states: Gstart, ¢1, 92,435 - - - s Gaccept

o If none of them is the removed state ¢ip, clearly G’ also accepts w.

e The reason is that each of the new regular expressions labeling the

arrows of G’ contains the old regular expression as part of a union.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 36 / 69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

o If gyip does appear,

e removing each run of consecutive Qrip States forms an accepting
computation for G'.

o The states ¢; and ¢; bracketing a run have a new regular expression on
the arrow between them that describes all strings taking ¢; to ¢; via

Grip on G.

@ So G’ accepts w.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 37 /69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

o Conversely, suppose that G’ accepts an input w.

@ As each arrow between any two states ¢; and ¢; in G’ describes the

collection of strings taking ¢; to g; in G, either directly or via gyip,

@ (G must also accept w.

Thus G and G’ are equivalent.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 38 /69

Regular Expressions Equivalence With Finite Automata

Equivalence With Finite Automata

Proof.
The induction hypothesis states that

@ when the algorithm calls itself recursively on input G’, the result is a
regular expression that is equivalent to G’

because G’ has k — 1 states.

Hence this regular expression also is equivalent to G

For any GNFA G, CONV ERT(G) is equivalent to G.

This concludes the proof of the Claim, Lemma, and Theorem.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2)

Regular Expressions Equivalence With Finite Automata

Converting a DFA into a regular expression

Example (Converting a 2-state DFA into an equivalent regular expression)

(1)oa

b
@D a,b
(a)

Regular Expressions Equivalence With Finite Automata

Converting a DFA into a regular expression

Example (Converting a 2-state DFA into an equivalent regular expression)

Regular Expressions Equivalence With Finite Automata

Converting a DFA into a regular expression

Example (Converting a 2-state DFA into an equivalent regular expression)

Regular Expressions Equivalence With Finite Automata

Converting a DFA into a regular expression

Example (Converting a 2-state DFA into an equivalent regular expression)

v

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 40 / 69

Regular Expressions Equivalence With Finite Automata

Converting a DFA into a regular expression

Example (Converting a 3-state DFA to an equivalent regular expression)

Regular Expressions Equivalence With Finite Automata

Converting a DFA into a regular expression

Example (Converting a 3-state DFA to an equivalent regular expression)

Regular Expressions Equivalence With Finite Automata

Converting a DFA into a regular expression

Example (Converting a 3-state DFA to an equivalent regular expression)

Regular Expressions Equivalence With Finite Automata

Converting a DFA into a regular expression

Example (Converting a 3-state DFA to an equivalent regular expression)

(baUa)(aaUb)*abUbb
(d)

v

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 41 / 69

Regular Expressions Equivalence With Finite Automata

Converting a DFA into a regular expression

(a(aaub)*abub)((baUa)(aaUb)*abubb)*((baUa)(aaUb)* U e)Ua(aaUb)*

2O, ©

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 42 / 69

Nonregular Languages

Outline

© Nonregular Languages

@ The Pumping Lemma for Regular Languages

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 43 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

Nonregular Languages

To understand the power of finite automata,

you must also understand their limitations.

In this section, we show

@ how to prove that certain languages cannot be recognized by any

finite automaton

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 44 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

Nonregular Languages

The language B = {0"1" | n > 0}

@ The machine seems to need to remember how many Os have been

seen so far as it reads the input.

@ Because the number of 0Os isn't limited, the machine will have to keep

track of an unlimited number of possibilities.

@ But it cannot do so with any finite number of states.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 45 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

Nonregular Languages

Consider two languages over the alphabet ¥ = {0, 1}
o C = {w | w has an equal number of Os and 1s}

e D = {w | w has an equal number of occurrences of 01 and 10 as

substrings}

As expected, C is not regular.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 46 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

Nonregular Languages

Consider two languages over the alphabet ¥ = {0, 1}
o C = {w | w has an equal number of Os and 1s}

e D = {w | w has an equal number of occurrences of 01 and 10 as

substrings}

As expected, C is not regular.

But surprisingly D is regular!

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 46 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

Nonregular Languages

Consider two languages over the alphabet ¥ = {0, 1}
o C = {w | w has an equal number of Os and 1s}

e D = {w | w has an equal number of occurrences of 01 and 10 as

substrings}

As expected, C is not regular.

But surprisingly D is regular!

Which is why we need mathematical proofs for certainty.

We show how to prove that certain languages are not regular.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015

46 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

The pumping lemma (IENESHIRS|IE)

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 47 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

The pumping lemma (IENESHIRS|IE)

@ This theorem states that all regular languages have a special property.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 47 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

The pumping lemma (IENESHIRS|IE)
@ This theorem states that all regular languages have a special property.

@ If we can show that a language does not have this property, we are

guaranteed that it is not regular.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 47 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

The pumping lemma (IENESHIRS|IE)
@ This theorem states that all regular languages have a special property.

@ If we can show that a language does not have this property, we are

guaranteed that it is not regular.

@ The property states that all strings in the language can be “pumped”
if they are at least as long as a certain special value, called the

pumping length.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 47 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

The pumping lemma (IENESHIRS|IE)
@ This theorem states that all regular languages have a special property.

@ If we can show that a language does not have this property, we are
guaranteed that it is not regular.

@ The property states that all strings in the language can be “pumped”
if they are at least as long as a certain special value, called the
pumping length.

@ That means each such string contains a section that can be repeated
any number of times with the resulting string remaining in the

language.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 47 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Theorem (Pumping lemma 5[#)
If A is a regular language, then there is a number p (the pumping length)
where if s is any string in A of length at least p, then s may be divided

into three pieces, s = xyz, satisfying the following conditions:

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 48 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Theorem (Pumping lemma 5[#)

If A is a regular language, then there is a number p (the pumping length)
where if s is any string in A of length at least p, then s may be divided
into three pieces, s = xyz, satisfying the following conditions:

@ foreachi >0, zy’z € A,

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 48 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Theorem (Pumping lemma 5[#)

If A is a regular language, then there is a number p (the pumping length)
where if s is any string in A of length at least p, then s may be divided
into three pieces, s = xyz, satisfying the following conditions:

@ foreachi >0, zy’z € A,
Q@ |y| >0, and

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 48 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Theorem (Pumping lemma 5[#)
If A is a regular language, then there is a number p (the pumping length)
where if s is any string in A of length at least p, then s may be divided
into three pieces, s = xyz, satisfying the following conditions:

@ foreachi >0, zy’z € A,

Q@ |y| >0, and

Q |zy| <p.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 48 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 49 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Let M = (Q,%,0,q1, F) be a DFA that recognizes A.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 49 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Proof idea
Let M = (Q,%,0,q1, F) be a DFA that recognizes A.

o We assign the pumping length p to be the number of states of M.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 49 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Proof idea
Let M = (Q,%,0,q1, F) be a DFA that recognizes A.

o We assign the pumping length p to be the number of states of M.

@ We show that any string s in A of length at least p may be broken

into the three pieces xyz, satisfying our three conditions.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 49 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Proof idea
Let M = (Q,%,0,q1, F) be a DFA that recognizes A.

o We assign the pumping length p to be the number of states of M.

@ We show that any string s in A of length at least p may be broken

into the three pieces xyz, satisfying our three conditions.

@ What if no strings in A are of length at least p?

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 49 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Proof idea
Let M = (Q,%,0,q1, F) be a DFA that recognizes A.

o We assign the pumping length p to be the number of states of M.

@ We show that any string s in A of length at least p may be broken

into the three pieces xyz, satisfying our three conditions.
@ What if no strings in A are of length at least p?

@ Then our task is even easier because the theorem becomes vacuously

true.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 49 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 50 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

If we let n be the length of s,

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 50 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

If we let n be the length of s,

@ the sequence of states that M goes through
when computing with input s has length n + 1.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 50 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

If we let n be the length of s,

@ the sequence of states that M goes through
when computing with input s has length n + 1.

@ Because n is at least p, we know that n + 1 is

greater than p, the number of states of M.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 50 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

If we let n be the length of s,

@ the sequence of states that M goes through
when computing with input s has length n + 1.

@ Because n is at least p, we know that n + 1 is
greater than p, the number of states of M.

@ Therefore, the sequence must contain a

repeated state.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 50 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

If we let n be the length of s,

@ the sequence of states that M goes through
when computing with input s has length n + 1.

@ Because n is at least p, we know that n + 1 is
greater than p, the number of states of M.

@ Therefore, the sequence must contain a

repeated state.

@ This result is an example of the pigeonhole

principle.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 50 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

If we let n be the length of s,

@ the sequence of states that M goes through
when computing with input s has length n + 1.

@ Because n is at least p, we know that n + 1 is

greater than p, the number of states of M.

@ Therefore, the sequence must contain a

repeated state.

@ This result is an example of the pigeonhole

principle.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 50 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Proof idea

The string s and the sequence of states that M goes through when

processing s. State g is the one that repeats.

T

g1 493 420 49 417 49 (4 435 (13

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 51/ 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 52 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

We now divide s into the three pieces z, ¥, and z.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 52 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

We now divide s into the three pieces z, ¥, and z.

@ Piece x is the part of s appearing before qg,

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 52 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

We now divide s into the three pieces z, ¥, and z.
@ Piece x is the part of s appearing before qg,

@ piece y is the part between the two appearances of qo,

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 52 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

We now divide s into the three pieces z, ¥, and z.
@ Piece x is the part of s appearing before qg,
@ piece y is the part between the two appearances of qo,

@ and piece z is the remaining part of s, coming after the second

occurrence of gg.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 52 / 69

Nonregular Languages

The Pumping Lemma for Regular Languages

Example (Showing how the strings z, y, and z affect M)

So x takes M from the state ¢; to qg, y takes M from g9 back to g9, and

z takes M from g9 to the accept state ¢;3.

M

-

22 BN
’)
/ /
Y /
\ /
\ ,
\ i
\
8 \
)
! \
\ . ,-
\ i
\ v |
x \ \
3 1
-7 - \ Z//\ v
Y]
i N /
N /
N 1
N /

2015

Yajun Yang (TJU)

1 Regular Languages (Part 2 of 2)

53 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 54 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Proof.
Let M = (Q,%,0,q1, F) be a DFA recognizing A and p be the number of

states of M.

2015 54 / 69

1 Regular Languages (Part 2 of 2)

Yajun Yang (TJU)

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Proof.
Let M = (Q,%,0,q1, F) be a DFA recognizing A and p be the number of

states of M.
@ Let s =ajasy---ay be astring in A of length n, where n > p.

2015 54 / 69

1 Regular Languages (Part 2 of 2)

Yajun Yang (TJU)

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Proof.
Let M = (Q,%,0,q1, F) be a DFA recognizing A and p be the number of

states of M.
@ Let s =ajasy---ay be astring in A of length n, where n > p.

@ Let ry, -+ ,rp41 be the sequence of states that M enters while

processing s, so 111 = 0(r;,a;) for 1 <i <mn.

2015 54 / 69

1 Regular Languages (Part 2 of 2)

Yajun Yang (TJU)

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Proof.
Let M = (Q,%,0,q1, F) be a DFA recognizing A and p be the number of

states of M.
@ Let s =ajasy---ay be astring in A of length n, where n > p.
@ Let ry, -+ ,rp41 be the sequence of states that M enters while
processing s, so 111 = 0(r;,a;) for 1 <i <mn.

@ This sequence has length n + 1, which is at least p + 1.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 54 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Proof.
Let M = (Q,%,0,q1, F) be a DFA recognizing A and p be the number of

states of M.
@ Let s =ajasy---ay be astring in A of length n, where n > p.
@ Let ry, -+ ,rp41 be the sequence of states that M enters while
processing s, so 111 = 0(r;,a;) for 1 <i <mn.
@ This sequence has length n + 1, which is at least p + 1.

@ Among the first p + 1 elements in the sequence, two must be the

same state, by the pigeonhole principle

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 54 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

v

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 55 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

@ We call the first of these r; and the second 7;.

v

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 55 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

@ We call the first of these r; and the second 7;.

@ Because r; occurs among the first p + 1 places in a sequence starting

at 1, we have [< p+ 1.

v

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 55 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

@ We call the first of these r; and the second 7;.

@ Because r; occurs among the first p + 1 places in a sequence starting
at 71, we have | < p+ 1.

@ Now |eth‘=a1--~aj_1,yzaj--~al,1,andzzal---an.

v

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 55 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

@ We call the first of these r; and the second 7;.

@ Because r; occurs among the first p + 1 places in a sequence starting
at 1, we have [< p+ 1.

o Now let x =aq---aj_1, y=a;---aq—1,and z =q;- - ay.

o As x takes M from r; to r;j, y takes M from r; to r; , and z takes

M from r; to r,41, which is an accept state, M must accept a:yiz for

1> 0.

v

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 55 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Proof.
@ We call the first of these r; and the second 7;.

@ Because r; occurs among the first p + 1 places in a sequence starting

at 71, we have | < p+ 1.
@ Now |et$:a1...aj_1, y=aj--- a1, and z=a - ap.

o As x takes M from r; to r;j, y takes M from r; to r; , and z takes
M from r; to rp+1, which is an accept state, M must accept xy'z for
1> 0.

@ We know that j # 1, so |y| > 0; and [< p+ 1, so |zy| < p.

v

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 55 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

@ We call the first of these r; and the second 7;.

@ Because r; occurs among the first p + 1 places in a sequence starting
at 1, we have [< p+ 1.

o Now let x =aq---aj_1, y=a;---aq—1,and z =q;- - ay.

o As x takes M from r; to r;j, y takes M from r; to r; , and z takes

M from r; to r,41, which is an accept state, M must accept a:yiz for
1> 0.

(]

We know that j # [, so |y| > 0; and I <p+1, so |zy| < p.

@ Thus we have satisfied all conditions of the pumping lemma.

O

v

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 55 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

To use the pumping lemma to prove that a language B is not regular,

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 56 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

To use the pumping lemma to prove that a language B is not regular,

@ first assume that B is regular in order to obtain a contradiction.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 56 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

To use the pumping lemma to prove that a language B is not regular,
@ first assume that B is regular in order to obtain a contradiction.
@ Then use the pumping lemma to guarantee the existence of a
pumping length p such that all strings of length p or greater in B can
be pumped.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 56 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

To use the pumping lemma to prove that a language B is not regular,
@ first assume that B is regular in order to obtain a contradiction.
@ Then use the pumping lemma to guarantee the existence of a

pumping length p such that all strings of length p or greater in B can
be pumped.

@ Next, find a string s in B that has length p or greater but that cannot
be pumped.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 56 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

To use the pumping lemma to prove that a language B is not regular,

@ first assume that B is regular in order to obtain a contradiction.

@ Then use the pumping lemma to guarantee the existence of a
pumping length p such that all strings of length p or greater in B can
be pumped.

@ Next, find a string s in B that has length p or greater but that cannot
be pumped.

o Finally, demonstrate that s cannot be pumped by considering all ways
of dividing s into z, ¥, and z and, for each such division, finding a

value i where zy'z ¢ B.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 56 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

To use the pumping lemma to prove that a language B is not regular,

@ first assume that B is regular in order to obtain a contradiction.

@ Then use the pumping lemma to guarantee the existence of a
pumping length p such that all strings of length p or greater in B can
be pumped.

@ Next, find a string s in B that has length p or greater but that cannot
be pumped.

o Finally, demonstrate that s cannot be pumped by considering all ways
of dividing s into z, ¥, and z and, for each such division, finding a
value i where zy'z ¢ B.

The existence of s contradicts the pumping lemma if B were regular.

Hence B cannot be regular.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 56 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

Let B be the language {0™1" | n > 0}. Use the pumping lemma to prove
that B is not regular.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 57 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

SENE
Let B be the language {0™1" | n > 0}. Use the pumping lemma to prove

A,

that B is not regular.

Proof. (The proof is by contradiction.)
@ Assume to the contrary that B is regular.

.

1 Regular Languages (Part 2 of 2)

Yajun Yang (TJU)

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

SENE
Let B be the language {0™1" | n > 0}. Use the pumping lemma to prove

that B is not regular.

A,

Proof. (The proof is by contradiction.)

@ Assume to the contrary that B is regular.

@ Let p be the pumping length given by the pumping lemma.

.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2)

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

SENE
Let B be the language {0™1" | n > 0}. Use the pumping lemma to prove

that B is not regular.

Proof. (The proof is by contradiction.)

@ Assume to the contrary that B is regular.
@ Let p be the pumping length given by the pumping lemma.

@ Choose s to be the string 0P1P.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 57 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

The Pumping Lemma for Regular Languages

SENE
Let B be the language {0™1" | n > 0}. Use the pumping lemma to prove
that B is not regular.

Proof. (The proof is by contradiction.)

@ Assume to the contrary that B is regular.
@ Let p be the pumping length given by the pumping lemma.
@ Choose s to be the string 0P1P.

@ Because s is a member of B and s has length more than p, the

pumping lemma guarantees that s can be split into three pieces,

s = xyz, where for any i > 0 the string zy'z is in B.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 57 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

We consider three cases to show that this result is impossible.

@ The string y consists only of Os. In this case, the string xyyz has
more Os than 1s and so is not a member of B, violating condition 1 of

the pumping lemma. This case is a contradiction.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 58 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

We consider three cases to show that this result is impossible.

@ The string y consists only of Os. In this case, the string xyyz has
more Os than 1s and so is not a member of B, violating condition 1 of

the pumping lemma. This case is a contradiction.

@ The string y consists only of 1s. This case also gives a contradiction.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 58 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

We consider three cases to show that this result is impossible.

@ The string y consists only of Os. In this case, the string xyyz has
more Os than 1s and so is not a member of B, violating condition 1 of

the pumping lemma. This case is a contradiction.
@ The string y consists only of 1s. This case also gives a contradiction.
© The string y consists of both Os and 1s. In this case, the string xyyz
may have the same number of Os and 1s, but they will be out of order

with some 1s before 0s. Hence it is not a member of B, which is a

contradiction.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 58 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

We consider three cases to show that this result is impossible.

@ The string y consists only of Os. In this case, the string xyyz has
more Os than 1s and so is not a member of B, violating condition 1 of

the pumping lemma. This case is a contradiction.
@ The string y consists only of 1s. This case also gives a contradiction.
© The string y consists of both Os and 1s. In this case, the string xyyz
may have the same number of Os and 1s, but they will be out of order

with some 1s before 0s. Hence it is not a member of B, which is a

contradiction.

Thus a contradiction is unavoidable if we make the assumption that B is

regular, so B is not regular.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 58 / 69

We consider three cases to show that this result is impossible.

@ The string y consists only of Os. In this case, the string xyyz has
more Os than 1s and so is not a member of B, violating condition 1 of

the pumping lemma. This case is a contradiction.
@ The string y consists only of 1s. This case also gives a contradiction.

© The string y consists of both Os and 1s. In this case, the string xyyz
may have the same number of Os and 1s, but they will be out of order
with some 1s before 0s. Hence it is not a member of B, which is a

contradiction.

Thus a contradiction is unavoidable if we make the assumption that B is

regular, so B is not regular.

Note that we can simplify this argument by applying condition 3 of the

pumping lemma to eliminate cases 2 and 3.
Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 58 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

Let C' = {w | w has an equal number of Os and 1s}. Use the pumping

lemma to prove that C'is not regular.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 59 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

Let C' = {w | w has an equal number of Os and 1s}. Use the pumping

lemma to prove that C is not regular.

Proof. (The proof is by contradiction.)

@ Assume to the contrary that C is regular.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2)

Nonregular Languages = The Pumping Lemma for Regular Languages

Let C' = {w | w has an equal number of Os and 1s}. Use the pumping

lemma to prove that C is not regular.

Proof. (The proof is by contradiction.)

@ Assume to the contrary that C is regular.

@ Let p be the pumping length given by the pumping lemma.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2)

Nonregular Languages = The Pumping Lemma for Regular Languages

Let C' = {w | w has an equal number of Os and 1s}. Use the pumping

lemma to prove that C is not regular.

Proof. (The proof is by contradiction.)

@ Assume to the contrary that C is regular.
@ Let p be the pumping length given by the pumping lemma.

@ Choose s to be the string 0P1P.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2)

Nonregular Languages = The Pumping Lemma for Regular Languages

Let C' = {w | w has an equal number of Os and 1s}. Use the pumping

lemma to prove that C is not regular.

Proof. (The proof is by contradiction.)

@ Assume to the contrary that C is regular.
@ Let p be the pumping length given by the pumping lemma.
@ Choose s to be the string 0P1P.

@ With s being a member of C and having length more than p, the
pumping lemma guarantees that s can be split into three pieces,

s = xyz, where for any i > 0 the string 2z is in C.

We would like to show that this outcome is impossible.

But wait, it is possible!

v

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 59 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

Let C' = {w | w has an equal number of Os and 1s}. Use the pumping

lemma to prove that C is not regular.

o If we let and z be the empty string and y be the string 0P17,

v

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 60 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

Let C' = {w | w has an equal number of Os and 1s}. Use the pumping

lemma to prove that C is not regular.

o If we let and z be the empty string and y be the string 0P17,

@ then zy’z always has an equal number of Os and 1s and hence is in C'.

v

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 60 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

Let C' = {w | w has an equal number of Os and 1s}. Use the pumping

lemma to prove that C is not regular.

o If we let and z be the empty string and y be the string 0P17,

@ then zy’z always has an equal number of Os and 1s and hence is in C'.
So it seems that s can be pumped.
Here condition 3 in the pumping lemma is useful.

o It stipulates that when pumping s, it must be divided so that
lzy| < p.

v

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 60 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

Let C' = {w | w has an equal number of Os and 1s}. Use the pumping

lemma to prove that C is not regular.

o If we let and z be the empty string and y be the string 0P17,

@ then zy’z always has an equal number of Os and 1s and hence is in C'.

So it seems that s can be pumped.

Here condition 3 in the pumping lemma is useful.
o It stipulates that when pumping s, it must be divided so that
[zyl < p.
o If |zy| < p, then y must consist only of 0s, so zyyz ¢ C.

v

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 60 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

Let C' = {w | w has an equal number of Os and 1s}. Use the pumping

lemma to prove that C is not regular.

o If we let and z be the empty string and y be the string 0P17,

@ then zy’z always has an equal number of Os and 1s and hence is in C'.

So it seems that s can be pumped.

Here condition 3 in the pumping lemma is useful.
o It stipulates that when pumping s, it must be divided so that
[zyl < p.
o If |zy| < p, then y must consist only of 0s, so zyyz ¢ C.

@ s cannot be pumped. That gives us the desired contradiction.

v

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 60 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

Let C' = {w | w has an equal number of Os and 1s}. Use the pumping

lemma to prove that C is not regular.

Need more care.

o If we had chosen s = (01)” instead, we would have run into trouble
because we need a string that cannot be pumped and that string can

be pumped, even taking condition 3 into account.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 61 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

Let C' = {w | w has an equal number of Os and 1s}. Use the pumping

lemma to prove that C is not regular.

Need more care.

o If we had chosen s = (01)” instead, we would have run into trouble
because we need a string that cannot be pumped and that string can
be pumped, even taking condition 3 into account.

@ Can you see how to pump it?

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 61 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

Let C' = {w | w has an equal number of Os and 1s}. Use the pumping

lemma to prove that C is not regular.

Need more care.

o If we had chosen s = (01)” instead, we would have run into trouble
because we need a string that cannot be pumped and that string can
be pumped, even taking condition 3 into account.

@ Can you see how to pump it?

o One way to doso sets z = ¢, y = 01, and z = (01)P~L.

o Then zy’z € C for every value of i.

If you fail on your first attempt to find a string that cannot be pumped,

don't despair. Try another one!

V.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 61 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

Let F' = {ww | w € {0,1}*}. Use the pumping lemma to prove that F'is

not regular.

Proof. (The proof is by contradiction.)

@ Assume to the contrary that F' is regular.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 62 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

Let F' = {ww | w € {0,1}*}. Use the pumping lemma to prove that F'is

not regular.

\

Proof. (The proof is by contradiction.)

@ Assume to the contrary that F' is regular.

@ Let p be the pumping length given by the pumping lemma.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2)

Nonregular Languages = The Pumping Lemma for Regular Languages

Let F' = {ww | w € {0,1}*}. Use the pumping lemma to prove that F'is

not regular.

\

Proof. (The proof is by contradiction.)

@ Assume to the contrary that F' is regular.
@ Let p be the pumping length given by the pumping lemma.

@ Let s to be the string 0P10P1.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2)

Nonregular Languages = The Pumping Lemma for Regular Languages

Let F' = {ww | w € {0,1}*}. Use the pumping lemma to prove that F'is

not regular.

Proof. (The proof is by contradiction.)

@ Assume to the contrary that F' is regular.

@ Let p be the pumping length given by the pumping lemma.
@ Let s to be the string 0P10P1.

@ Because s is a member of F' and s has length more than p, the
pumping lemma guarantees that s can be split into three pieces,

s = xyz, satisfying the three conditions of the lemma.

We show that this outcome is impossible.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 62 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

Let F' = {ww | w € {0,1}*}. Use the pumping lemma to prove that F' is

not regular.

e Condition 3 is once again crucial because without it we could pump s

if we let x and z be the empty string.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2)

Nonregular Languages = The Pumping Lemma for Regular Languages

Let F' = {ww | w € {0,1}*}. Use the pumping lemma to prove that F' is

not regular.

e Condition 3 is once again crucial because without it we could pump s

if we let x and z be the empty string.

@ With condition 3 the proof follows because y must consist only of Os,

so zyyz ¢ F

v

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 63 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

Let F' = {ww | w € {0,1}*}. Use the pumping lemma to prove that F' is

not regular.

Proof.
e Condition 3 is once again crucial because without it we could pump s

if we let x and z be the empty string.
@ With condition 3 the proof follows because y must consist only of Os,

so zyyz ¢ F

Observe that we chose s = 0P10P1 to be a string that exhibits the

“essence” of the nonregularity of F', as opposed to, say, the string 0P0P.

v

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 63 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

Let F' = {ww | w € {0,1}*}. Use the pumping lemma to prove that F' is

not regular.

Proof.
e Condition 3 is once again crucial because without it we could pump s

if we let x and z be the empty string.
@ With condition 3 the proof follows because y must consist only of Os,

so zyyz ¢ F

Observe that we chose s = 0P10P1 to be a string that exhibits the
“essence” of the nonregularity of F', as opposed to, say, the string 0P0P.

Even though 0P0? is a member of F, it fails to demonstrate a

contradiction because it can be pumped.

v

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 63 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

Let D = {1"° | n > 0}. Use the pumping lemma to prove that D is not

regular.

Proof. (The proof is by contradiction.)

@ Assume to the contrary that D is regular.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 64 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

Let D = {1"° | n > 0}. Use the pumping lemma to prove that D is not

regular.

Proof. (The proof is by contradiction.)

@ Assume to the contrary that D is regular.

@ Let p be the pumping length given by the pumping lemma.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 64 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

Let D = {1"° | n > 0}. Use the pumping lemma to prove that D is not

regular.

Proof. (The proof is by contradiction.)

@ Assume to the contrary that D is regular.

@ Let p be the pumping length given by the pumping lemma.

@ Let s to be the string 17*

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 64 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

Let D = {1"° | n > 0}. Use the pumping lemma to prove that D is not

regular.

Proof. (The proof is by contradiction.)

@ Assume to the contrary that D is regular.

@ Let p be the pumping length given by the pumping lemma.
@ Let s to be the string 17*

@ Because s is a member of D and s has length at least p, the pumping
lemma guarantees that s can be split into three pieces, s = zyz,

where for any i > 0 the string zy'z is in D.

We show that this outcome is impossible.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 64 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

Let D = {1"° | n > 0}. Use the pumping lemma to prove that D is not

regular.

Now consider the two strings zyz and zy?z.

@ By condition 3 of the pumping lemma, |zy| < p and thus |y| < p.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2)

Nonregular Languages = The Pumping Lemma for Regular Languages

Let D = {1"° | n > 0}. Use the pumping lemma to prove that D is not

regular.

Now consider the two strings zyz and zy?z.
@ By condition 3 of the pumping lemma, |zy| < p and thus |y| < p.

e We have |zyz| = p? and so |zy%2| < p? + p.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2)

Nonregular Languages = The Pumping Lemma for Regular Languages

Let D = {1"° | n > 0}. Use the pumping lemma to prove that D is not

regular.

Now consider the two strings zyz and zy?z.
@ By condition 3 of the pumping lemma, |zy| < p and thus |y| < p.
e We have |zyz| = p? and so |zy%2| < p? + p.
e Butp’ +p<p’+2p+1=(p+1)>2

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2)

Nonregular Languages = The Pumping Lemma for Regular Languages

Let D = {1"° | n > 0}. Use the pumping lemma to prove that D is not

regular.

Now consider the two strings zyz and zy?z.
@ By condition 3 of the pumping lemma, |zy| < p and thus |y| < p.
e We have |zyz| = p? and so |zy%2| < p? + p.
e Butp’ +p<p’+2p+1=(p+1)>2

o Condition 2 implies that |y| > 0 and so |zy?z| > p®.

v

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 65 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages
Example

Let D = {1"° | n > 0}. Use the pumping lemma to prove that D is not

regular.
v

Now consider the two strings zyz and zy?z.
@ By condition 3 of the pumping lemma, |zy| < p and thus |y| < p.
e We have |zyz| = p? and so |zy%2| < p? + p.
e Butp’ +p<p’+2p+1=(p+1)>2
o Condition 2 implies that |y| > 0 and so |zy?z| > p®.

o Therefore, p? < |xy?z| < (p + 1)%. Hence this length cannot be a

perfect square itself.

v

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 65 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

Let D = {1"° | n > 0}. Use the pumping lemma to prove that D is not

regular.

Now consider the two strings zyz and zy?z.
@ By condition 3 of the pumping lemma, |zy| < p and thus |y| < p.

We have |zyz| = p? and so |zy%z| < p? + p.

Butp? +p<p’+2p+1=(p+1)>2

o Condition 2 implies that |y| > 0 and so |zy?z| > p®.

(]

Therefore, p? < |zy?2z| < (p + 1)%. Hence this length cannot be a

perfect square itself.

@ So we arrive at the contradiction 232z ¢ D and conclude that D is

not regular.

v

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 65 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

Let E = {0'17 | i > j}. Use the pumping lemma to prove that D is not

regular.

Proof. (The proof is by contradiction.)

@ Assume to the contrary that E is regular.

\

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2)

Nonregular Languages = The Pumping Lemma for Regular Languages

Let E = {0'17 | i > j}. Use the pumping lemma to prove that D is not

regular.

Proof. (The proof is by contradiction.)

@ Assume to the contrary that E is regular.

@ Let p be the pumping length given by the pumping lemma.

\

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2)

Nonregular Languages = The Pumping Lemma for Regular Languages

Let E = {0'17 | i > j}. Use the pumping lemma to prove that D is not

regular.

Proof. (The proof is by contradiction.)

@ Assume to the contrary that E is regular.
@ Let p be the pumping length given by the pumping lemma.

o Let s = orH11P,

\

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2)

Nonregular Languages = The Pumping Lemma for Regular Languages

Let E = {0'17 | i > j}. Use the pumping lemma to prove that D is not

regular.

Proof. (The proof is by contradiction.)

@ Assume to the contrary that E is regular.

@ Let p be the pumping length given by the pumping lemma.
o Let s =0Pt11P,
@ Because s is a member of E and s has length at least p, the pumping

lemma guarantees that s can be split into three pieces, s = zyz,

satisfying the conditions of the pumping lemma.

We show that this outcome is impossible.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 66 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

Let E = {0°17 | i > j}. Use the pumping lemma to prove that D is not

regular.

@ By condition 3, y consists only of Os.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 67 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

Let E = {0°17 | i > j}. Use the pumping lemma to prove that D is not

regular.

@ By condition 3, y consists only of Os.

@ Let's examine the string xyyz to see whether it can be in E.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 67 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

Let E = {0°17 | i > j}. Use the pumping lemma to prove that D is not

regular.

@ By condition 3, y consists only of Os.
@ Let's examine the string xyyz to see whether it can be in E.

@ Adding an extra copy of y increases the number of 0s.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 67 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

Let E = {017 | i > j}. Use the pumping lemma to prove that D is not

regular.

By condition 3, y consists only of Os.

Let's examine the string zyyz to see whether it can be in E.
@ Adding an extra copy of y increases the number of 0s.

@ Increasing the number of Os will still give a string in E.

No contradiction occurs. We need to try something else.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 67 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

Example
Let £ = {017 | i > j}. Use the pumping lemma to prove that D is not

regular.

The pumping lemma states that zy’z € E even when i = 0,

@ so let's consider the string %z = z2.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 68 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

Example
Let £ = {017 | i > j}. Use the pumping lemma to prove that D is not

regular.

The pumping lemma states that zy’z € E even when i = 0,
@ so let's consider the string %z = z2.

@ Because |y| > 0 and s has just one more 0 than 1,

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 68 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

Example
Let £ = {017 | i > j}. Use the pumping lemma to prove that D is not

regular.
v

The pumping lemma states that zy’z € E even when i = 0,
@ so let's consider the string %z = z2.
@ Because |y| > 0 and s has just one more 0 than 1,

@ xz cannot have more Os than 1s.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 68 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

Example
Let £ = {017 | i > j}. Use the pumping lemma to prove that D is not

regular.
v

The pumping lemma states that zy’z € E even when i = 0,
@ so let's consider the string %z = z2.
@ Because |y| > 0 and s has just one more 0 than 1,

@ xz cannot have more Os than 1s.

@ So it cannot be a member of E. Thus we obtain a contradiction.

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 68 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

Conclusion

Yajun Yang (TJU) 2015

ges (Part 2 of 2

Nonregular Languages = The Pumping Lemma for Regular Languages

Conclusion

@ Regular Expressions
e Formal Definitions
e Equivalence With Finite
Automata

o From REs to NFAs
o From DFAs to REs

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 69 / 69

Nonregular Languages = The Pumping Lemma for Regular Languages

Conclusion

@ Regular Expressions @ Nonregular Languages
e Formal Definitions e The Pumping Lemma
e Equivalence With Finite
Automata

o From REs to NFAs
o From DFAs to REs

Yajun Yang (TJU) 1 Regular Languages (Part 2 of 2) 2015 69 / 69

	Regular Expressions
	Formal Definition of a Regular Expression
	Equivalence With Finite Automata

	Nonregular Languages
	The Pumping Lemma for Regular Languages

