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天津大学大学图形标志是天津大学 VIS 的重要组成部分，既是形象的外在展示，也

是自我身份的内在认同，更体现了天津大学的办学理念和特色、承载文化精神并映

射文化内涵。

天津大学标志形象基本元素由图形标志和字体标志两部分组成，其中图形标志是

其核心元素。图形标志核心图形为盾形，源自天津大学建校初期（北洋大学）图形

标志，为西方大学图形标志的传统样式，体现了当时“西学为用”的指导思想，也

反映出天津大学的悠久历史和尊贵感。盾形中篆书“北洋”，笔画凝炼劲挺，圆健

美观，表现了天津大学源远流长的历史。“1895”为天津大学创建年份。图形标志

外沿齿状修饰边象征天津大学是一所以工为主 , 理、工、文、管相结合的综合性大学。

英文校名和毛体中文校名沿圆弧排列。图形标志色彩为“北洋蓝”，是天津大学校色，

蓝色代表理性、沉稳、效率、科技。
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A Computational Model

The theory of computation begins with a question:

What is a computer?

Computational model : an idealized computer.

Several different computational models

Finite automata or finite state machine 有穷自动机
Pushdown automata 下推自动机
Linear-bounded automata 线性有界自动机
Turing machine 图灵机
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Finite Automata
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Finite Automata

Example: An Automatic Door

door

front pad rear pad
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Finite Automata

Example: An Automatic Door

CLOSED OPEN

FRONT

REAR
BOTH

NEITHER

NEITHER

FRONT
REAR
BOTH

inpute signal

NEITHER FRONT REAR BOTH

state
CLOSED CLOSED OPEN CLOSED CLOSED

OPEN CLOSED OPEN OPEN OPEN
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Finite Automata

Example: A Finite Automaton

Example (A finite automaton M1)

q1 q2 q3

0

1

1

0

0,1

the state diagram of M1

three states: q1, q2, and q3

the start state: q1

the accept state: q2

transitions: the arrows going from one state to another
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Finite Automata

Example: A Finite Automaton

Example (A finite automaton M1)

q1 q2 q3

0

1

1

0

0,1

Feed the input string 1101 to the machine M1

1 Start in state q1

2 Read 1, follow transition from q1 to q2

3 Read 1, follow transition from q2 to q2

4 Read 0, follow transition from q2 to q3

5 Read 1, follow transition from q3 to q2

6 Accept because M1 is in an accept state q2 at the end of the input
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Finite Automata Formal Definition of a Finite Automaton

Formal Definition of a Finite Automaton

Definition (DFA (确定型有穷自动机))

A deterministic finite automaton (DFA) is a 5-tuple (Q,Σ, δ, q0, F ),

where

1 Q is a finite set called the states,

2 Σ is a finite set called the alphabet,

3 δ : Q× Σ→ Q is the transition function,

4 q0 ∈ Q is the start state, and

5 F ⊆ Q is the set of accept states.
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Finite Automata Formal Definition of a Finite Automaton

Using the Definition of DFA

Example (A finite automaton M1)

q1 q2 q3

0

1

1

0

0,1

M1 = (Q,Σ, δ, q1, F ), where

1 Q = {q1, q2, q3}

2 Σ = {0, 1}

3 δ is described as: δ(q1, 0) = q1, δ(q1, 1) = q2,

δ(q2, 0) = q3, δ(q2, 1) = q2, δ(q3, 0) = q2, δ(q3, 1) = q2

4 q1 is the start state, and

5 F = {q2}

Yajun Yang (TJU) 1 Regular Languages (Part 1 of 2) 2015 10 / 66



Finite Automata Formal Definition of a Finite Automaton

Using the Definition of DFA

Example (A finite automaton M1)

q1 q2 q3

0

1

1

0

0,1 M1 = (Q,Σ, δ, q1, F ), where

1 Q = {q1, q2, q3}

2 Σ = {0, 1}

3 δ is described as: δ(q1, 0) = q1, δ(q1, 1) = q2,

δ(q2, 0) = q3, δ(q2, 1) = q2, δ(q3, 0) = q2, δ(q3, 1) = q2

4 q1 is the start state, and

5 F = {q2}

Yajun Yang (TJU) 1 Regular Languages (Part 1 of 2) 2015 10 / 66



Finite Automata Formal Definition of a Finite Automaton

Using the Definition of DFA

Example (A finite automaton M1)

q1 q2 q3

0

1

1

0

0,1 M1 = (Q,Σ, δ, q1, F ), where

1 Q = {q1, q2, q3}

2 Σ = {0, 1}

3 δ is described as: δ(q1, 0) = q1, δ(q1, 1) = q2,

δ(q2, 0) = q3, δ(q2, 1) = q2, δ(q3, 0) = q2, δ(q3, 1) = q2

4 q1 is the start state, and

5 F = {q2}

Yajun Yang (TJU) 1 Regular Languages (Part 1 of 2) 2015 10 / 66



Finite Automata Formal Definition of a Finite Automaton

Using the Definition of DFA

Example (A finite automaton M1)

q1 q2 q3

0

1

1

0

0,1 M1 = (Q,Σ, δ, q1, F ), where

1 Q = {q1, q2, q3}

2 Σ = {0, 1}

3 δ is described as: δ(q1, 0) = q1, δ(q1, 1) = q2,

δ(q2, 0) = q3, δ(q2, 1) = q2, δ(q3, 0) = q2, δ(q3, 1) = q2

4 q1 is the start state, and

5 F = {q2}

Yajun Yang (TJU) 1 Regular Languages (Part 1 of 2) 2015 10 / 66



Finite Automata Formal Definition of a Finite Automaton

Using the Definition of DFA

Example (A finite automaton M1)

q1 q2 q3

0

1

1

0

0,1 M1 = (Q,Σ, δ, q1, F ), where

1 Q = {q1, q2, q3}

2 Σ = {0, 1}

3 δ is described as: δ(q1, 0) = q1, δ(q1, 1) = q2,

δ(q2, 0) = q3, δ(q2, 1) = q2, δ(q3, 0) = q2, δ(q3, 1) = q2

4 q1 is the start state, and

5 F = {q2}

Yajun Yang (TJU) 1 Regular Languages (Part 1 of 2) 2015 10 / 66



Finite Automata Formal Definition of a Finite Automaton

Using the Definition of DFA

Example (A finite automaton M1)

q1 q2 q3

0

1

1

0

0,1 M1 = (Q,Σ, δ, q1, F ), where

1 Q = {q1, q2, q3}

2 Σ = {0, 1}

3 δ is described as: δ(q1, 0) = q1, δ(q1, 1) = q2,

δ(q2, 0) = q3, δ(q2, 1) = q2, δ(q3, 0) = q2, δ(q3, 1) = q2

4 q1 is the start state, and

5 F = {q2}

Yajun Yang (TJU) 1 Regular Languages (Part 1 of 2) 2015 10 / 66



Finite Automata Formal Definition of a Finite Automaton

Using the Definition of DFA

Example (A finite automaton M1)

q1 q2 q3

0

1

1

0

0,1 M1 = (Q,Σ, δ, q1, F ), where

1 Q = {q1, q2, q3}

2 Σ = {0, 1}

3 δ is described as: δ(q1, 0) = q1, δ(q1, 1) = q2,

δ(q2, 0) = q3, δ(q2, 1) = q2, δ(q3, 0) = q2, δ(q3, 1) = q2

4 q1 is the start state, and

5 F = {q2}

Yajun Yang (TJU) 1 Regular Languages (Part 1 of 2) 2015 10 / 66



Finite Automata Formal Definition of a Finite Automaton

Language of DFA

q1 q2 q3

0

1

1

0

0,1

If A is the set of all strings that machine M accepts, we say that A is

the language of machine M and write L(M) = A.

We say that M recognizes A.

A machine may accept several strings, but it always recognizes only

one language.

What about the machine accepts no strings?
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Finite Automata Formal Definition of a Finite Automaton

Language of DFA M1

DFA M1

q1 q2 q3

0

1

1

0

0,1

L(M1) =?

L(M1) =

A = {w | w contains at least one 1 and

an even number of 0s follow the last 1 }
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Finite Automata Examples of Finite Automata

Example: DFA M2

DFA M2

q1 q2

0

1

1

0

M2 = ({q1, q2}, {0, 1}, δ, q1, {q2})

δ:

0 1

q1 q1 q2

q2 q1 q2

L(M2) =?

try 1101, try 110

L(M2) = {w | w ends in a 1}
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Finite Automata Examples of Finite Automata

Example: DFA M3

DFA M3

q1 q2

0

1

1

0

M3 = ({q1, q2}, {0, 1}, δ, q1, {q1})

δ:

0 1

q1 q1 q2

q2 q1 q2

L(M3) =?

L(M3) = {w | w is the empty string ε or ends in a 0}

What is the relationship between L(M2) and L(M3)?
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Example: DFA M5
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Finite Automata Examples of Finite Automata

Example: Generalization of M5

Σ = {<RESET>, 0, 1, 2}

For each i ≥ 1 let Ai be the language of all strings where the sum of
the numbers is a multiple of i, except that the sum is reset to 0
whenever the symbol <RESET> appears.

For each Ai we give a DFA Bi, recognizing Ai.

Bi = {Qi,Σ, δi, q0, {q0}}
Qi = {q0, q1, q2, . . . , qi−1}
We design the transition function δi so that for each j, if Bi is in qj ,

the running sum is j, modulo i.

δi(qj , 0) = qj

δi(qj , 1) = qk, where k = j + 1 modulo i

δi(qj , 2) = qk, where k = j + 2 modulo i

δi(qj ,<RESET>) = q0
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Finite Automata Formal Definition of Computation

Formal Definition of Computation for a DFA

Let M = (Q,Σ, δ, q0, F ) be a DFA.

Let w = a1a2 . . . an be a string where ai ∈ Σ.

Then M accepts w if a sequence of states r0, r1, . . . , rn in Q exists
with three conditions:

1 r0 = q0

2 δ(ri, ai+1) = ri+1, for i = 0, . . . , n− 1

3 rn ∈ F

We say that M recognizes language A if A = {w |M accepts w}

Yajun Yang (TJU) 1 Regular Languages (Part 1 of 2) 2015 18 / 66



Finite Automata Formal Definition of Computation

Formal Definition of Computation for a DFA

Let M = (Q,Σ, δ, q0, F ) be a DFA.

Let w = a1a2 . . . an be a string where ai ∈ Σ.

Then M accepts w if a sequence of states r0, r1, . . . , rn in Q exists
with three conditions:

1 r0 = q0

2 δ(ri, ai+1) = ri+1, for i = 0, . . . , n− 1

3 rn ∈ F

We say that M recognizes language A if A = {w |M accepts w}

Yajun Yang (TJU) 1 Regular Languages (Part 1 of 2) 2015 18 / 66



Finite Automata Formal Definition of Computation

Formal Definition of Computation for a DFA

Let M = (Q,Σ, δ, q0, F ) be a DFA.

Let w = a1a2 . . . an be a string where ai ∈ Σ.

Then M accepts w if a sequence of states r0, r1, . . . , rn in Q exists
with three conditions:

1 r0 = q0

2 δ(ri, ai+1) = ri+1, for i = 0, . . . , n− 1

3 rn ∈ F

We say that M recognizes language A if A = {w |M accepts w}

Yajun Yang (TJU) 1 Regular Languages (Part 1 of 2) 2015 18 / 66



Finite Automata Formal Definition of Computation

Formal Definition of Computation for a DFA

Let M = (Q,Σ, δ, q0, F ) be a DFA.

Let w = a1a2 . . . an be a string where ai ∈ Σ.

Then M accepts w if a sequence of states r0, r1, . . . , rn in Q exists
with three conditions:

1 r0 = q0

2 δ(ri, ai+1) = ri+1, for i = 0, . . . , n− 1

3 rn ∈ F

We say that M recognizes language A if A = {w |M accepts w}

Yajun Yang (TJU) 1 Regular Languages (Part 1 of 2) 2015 18 / 66



Finite Automata Formal Definition of Computation

Formal Definition of Computation for a DFA

Let M = (Q,Σ, δ, q0, F ) be a DFA.

Let w = a1a2 . . . an be a string where ai ∈ Σ.

Then M accepts w if a sequence of states r0, r1, . . . , rn in Q exists
with three conditions:

1 r0 = q0

2 δ(ri, ai+1) = ri+1, for i = 0, . . . , n− 1

3 rn ∈ F

We say that M recognizes language A if A = {w |M accepts w}

Yajun Yang (TJU) 1 Regular Languages (Part 1 of 2) 2015 18 / 66



Finite Automata Formal Definition of Computation

Regular Language

Definition (regular language)

A language is called a regular language if some DFA recognizes it.

Example
Take DFA M5

w =10<RESET>22<RESET>012

The sequence of states M5 enters when computing on w is

q0, q1, q1, q0, q2, q1, q0, q0, q1, q0

which satisfies the three conditions.

L(M5) = {w | the sum of the symbols in w is 0 modulo 3,

except that <RESET> resets the count to 0 }
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Finite Automata Designing Finite Automata

Designing Finite Automata

An approach helpful: “reader as automaton"
put yourself in the place of the machine you are trying to design

and then see how you would go about performing the machine’s task

Example

Σ = {0, 1}

The language consists of all strings with an odd number of 1s.

Construct a finite automaton E1 to recognize this language.
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DFA E1

qeven qodd
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Finite Automata Designing Finite Automata

Designing Finite Automata

Example

Σ = {0, 1}

The language of all strings that contain the string 001 as a substring.

To design a finite automaton E2 to recognize this language.

1 q: haven’t just seen any symbols of the pattern
2 q0: have just seen a 0
3 q00 : have just seen 00
4 q001: have seen the entire pattern 001
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Finite Automata Designing Finite Automata

Designing Finite Automata

Example
The language of all strings that contain the string 001 as a substring.

1 q: haven’t just seen any symbols of the pattern
2 q0: have just seen a 0
3 q00 : have just seen 00
4 q001: have seen the entire pattern 001

DFA E2

q q0 q00 q001

1
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Finite Automata The Regular Operations

The Regular Operations

Definition (regular operations)

Let A and B be language. We define the regular operations union,

concatenation, and star as follows:

Union: A ∪B = {x | x ∈ A or x ∈ B}

Concatenation: A ◦B = {xy | x ∈ A and y ∈ B}

Star: A∗ = {x1x2 . . . xk | k ≥ 0 and each xi ∈ A}
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Finite Automata The Regular Operations

The Regular Operations

Example

Let the alphabet Σ be the standard 26 letters {a, b, . . . , z}.

If A = { good, bad} and B = {boy, girl}, then

A ∪B = {good, bad, boy, girl}

A ◦B = {goodboy, goodgirl, badboy, badgirl}

A∗ = {ε, good, bad, goodgood, goodbad, badgood, badbad,
goodgoodgood, goodgoodbad, goodbadgood, goodbadbad,. . . }
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Finite Automata The Regular Operations

The Regular Operations

Closed

Theorem
The class of regular languages is closed under the union operation.

In other words, if A1 and A2 are regular languages, so is A1 ∪A2.

Proof.
Let M1 recognize A1, where M1 = (Q1,Σ, δ1, q1, F1), and

M2 recognize A2, where M2 = (Q2,Σ, δ2, q2, F2).

Construct M to recognize A1 ∪A2, where M = (Q,Σ, δ, q0, F ).

1 Q = {(r1, r2) | r1 ∈ Q1 and r2 ∈ Q2}

2 Σ is the same as in M1 and M2
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Finite Automata The Regular Operations

The Regular Operations

Theorem
The class of regular languages is closed under the union operation.

In other words, if A1 and A2 are regular languages, so is A1 ∪A2.

Proof.
3 For each (r1, r2) ∈ Q and each a ∈ Σ, let

δ((r1, r2), a) = (δ1(r1, a), δ2(r2, a))

4 q0 is the pair (q1, q2)

5 F = {(r1, r2) | r1 ∈ F1 or r2 ∈ F2}
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Finite Automata The Regular Operations

The Regular Operations

Theorem
The class of regular languages is closed under the concatenation operation.

In other words, if A1 and A2 are regular languages, so is A1 ◦A2.

Problem: M doesn’t know where to break the input string?
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Nondeterminism

Outline

1 Finite Automata

2 Nondeterminism

Formal Definition of a Nondeterministic Finite Automaton

Equivalence of NFAs and DFAs

Closure Under the Regular Operations
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Nondeterminism

Nondeterminism 非确定性

Determinism: When the machine is in a given state and reads the

next input symbol, we know what the next state will be it is

determined. We call this deterministic computation.

Nondeterminism: In a nondeterministic machine, several choices

may exist for the next state at any point.

Nondeterminism is a generalization of determinism,

so every deterministic finite automaton is automatically a

nondeterministic finite automaton.
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Nondeterminism

Nondeterministic Finite Automata

NFA N1

Nondeterministic finite automata may have additional features.

q1 q2 q3 q4

0,1

1 0,ε 1

0,1

DFA: deterministic finite automaton 确定型有穷自动机

NFA: nondeterministic finite automaton 非确定型有穷自动机
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Nondeterminism

NFAs

NFA N1

q1 q2 q3 q4

0,1

1 0,ε 1

0,1

DFA:
1 every state of a DFA always has exactly one exiting transition arrow for

each symbol in the alphabet.

NFA:
1 a state may have zero, one, or many exiting arrows for each alphabet

symbol.
2 an NFA may have arrows labeled with members of the alphabet or ε.
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Nondeterminism

Deterministic and Nondeterministic Computations

Deterministic
computation

start

accept or reject

Nondeterministic
computation

start

reject

accept
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Nondeterminism

How Does an NFA Compute?

Symbol read

0

1

0

1

1

0

q1 Start

q1

q1 q2 q3

q1 q3

q1 q2 q3 q4

q1 q2 q3 q4 q4

q1 q3 q4 q4
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Nondeterminism

NFAs

NFA N1

q1 q2 q3 q4

0,1

1 0,ε 1

0,1

L(N1) =?

{w | w contain either 101 or 11 as a substring}
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Nondeterminism

Example: NFA N2

The language A:

{the language consisting of all strings over {0, 1} containing a 1 in the

third position from the end}
e.g., 000100 ∈ A, 0011 /∈ A

Example (NFA N2)

q1 q2 q3 q4

0,1

1 0,1 0,1

L(N2) = A
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Nondeterminism

Example: NFA N2

Every NFA can be converted into an equivalent DFA.

Example (The equivalent DFA of NFA N2)

q000 q100 q010 q110

q001 q101 q011 q111

0

1

0

1

0

1

0

10

1

0

1

0

1

0

1
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Nondeterminism

Example: NFA N3

The convenience of having ε arrows

Example (NFA N3)

ε

ε

0

0

0

0 0

L(N3) = {all strings of the form 0k where k is a multiple of 2 or 3. }
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Nondeterminism

Example: NFA N4

Example (NFA N4)

q1

q2 q3

b ε

a
a,b

a

it accepts the strings ε, a, baba, baa

it accepts it doesn’t accept the strings b, bb, babba
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Nondeterminism Formal Definition of a Nondeterministic Finite Automaton

Formal Definition of a Nondeterministic Finite Automaton

Definition (NFA)

A nondeterministic finite automaton (NFA) is a 5-tuple (Q,Σ, δ, q0, F ),

where

1 Q is a finite set of states,

2 Σ is a finite alphabet,

3 δ : Q× Σε → P(Q) is the transition function,

4 q0 ∈ Q is the start state, and

5 F ⊆ Q is the set of accept states.

P(Q) is the power set of Q

Σε = Σ ∪ {ε}
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Nondeterminism Formal Definition of a Nondeterministic Finite Automaton

Example: The Formal Definition of NFA N1

Example (Recall the NFA N1)

q1 q2 q3 q4

0,1

1 0,ε 1

0,1

N1 = (Q,Σ, δ, q1, F ), where

Q = {q1, q2, q3, q4}

Σ = {0, 1}

δ is given as

q1 is the start state

F = {q4}

0 1 ε

q1 {q1} {q1, q2} ∅
q2 {q3} ∅ {q3}
q3 ∅ {q4} ∅
q4 {q4} {q4} ∅
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Nondeterminism Formal Definition of a Nondeterministic Finite Automaton

Formal Definition of Computation for an NFA

Let N = (Q,Σ, δ, q0, F ) be an NFA.

Let w be a string over Σ.

Then N accepts w if we can write w as w = a1a2 · · · an, where
ai ∈ Σε and a sequence of states r0, r1, . . . , rn exists in Q with three
conditions:

1 r0 = q0

2 ri+1 ∈ δ(ri, ai+1), for i = 0, . . . , n− 1

3 rn ∈ F
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Nondeterminism Equivalence of NFAs and DFAs

Equivalence of NFAs and DFAs

DFA and NFA recognize the same class of languages.

Surprising: NFAs appear to have more power than DFAs, so we might

expect that NFAs recognize more languages

Useful: describing an NFA for a given language sometimes is much

easier than describing a DFA for that language

Equivalent
Say that two machines are equivalent if they recognize the same language.
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Nondeterminism Equivalence of NFAs and DFAs

Equivalence of NFAs and DFAs

Theorem
Every nondeterministic finite automaton has an equivalent deterministic

finite automaton.

Proof.
Let N = (Q,Σ, δ, q0, F ) be the NFA recognizing some language A.

We construct a DFA M = (Q′,Σ, δ′, q′0, F
′) recognizing A.

Before doing the full construction, let’s first consider the easier case

wherein N has no ε arrows. Later we take the ε arrows into account.
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Nondeterminism Equivalence of NFAs and DFAs

Equivalence of NFAs and DFAs

Theorem
Every nondeterministic finite automaton has an equivalent deterministic

finite automaton.

Proof.
1 Q′ = P(Q)

2 For R ∈ Q′ and a ∈ Σ,

δ′(R, a) = {q ∈ Q | q ∈ δ(r, a) for some r ∈ R}

δ′(R, a) =
⋃
r∈R

δ(r, a)
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Nondeterminism Equivalence of NFAs and DFAs

Equivalence of NFAs and DFAs

Theorem
Every nondeterministic finite automaton has an equivalent deterministic

finite automaton.

Proof.
3 q′0 = {q0}

4 F ′ = {R ∈ Q′ | R contains an accept state of N}
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Nondeterminism Equivalence of NFAs and DFAs

Equivalence of NFAs and DFAs

Proof.
Now we need to consider the ε arrows.

For any state R of M ,
E(R) = {q | q can be reached from R by traveling along 0 or more ε
arrows}

E(R) is the collection of states that can be reached from members of R

by going only along ε arrows, including the members of R themselves.

δ′(R, a) = {q ∈ Q | q ∈ E(δ(r, a)) for some r ∈ R}

q′0 = E({q0})

We have now completed the construction of the DFA M that simulates

the NFA N .
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Nondeterminism Equivalence of NFAs and DFAs

Equivalence of NFAs and DFAs

Theorem
Every nondeterministic finite automaton has an equivalent deterministic

finite automaton.

Corollary
A language is regular if and only if some nondeterministic finite automaton

recognizes it.
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Nondeterminism Equivalence of NFAs and DFAs

Equivalence of NFAs and DFAs

Example (NFA N4)

NFA N4 = (Q,Σ, δ, q0, F )

Q = {1, 2, 3}

Σ = {a, b}

δ

q0 = 1

F = {1}

1

2 3

b ε

a
a,b

a

Construct a DFA D that is equivalent to N4
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Nondeterminism Equivalence of NFAs and DFAs

Equivalence of NFAs and DFAs

NFA N4 = (Q,Σ, δ, q0, F )

1

2 3

b ε

a
a,b

a

DFA D = (Q′,Σ, δ′, q′0, F
′)

Q′ = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

Σ = {a, b}

q′0 = E({q0}) = E({1}) = {1, 3}

F ′ = {{1}, {1, 2}, {1, 3}, {1, 2, 3}}
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Q′ = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

Σ = {a, b}

q′0 = E({q0}) = E({1}) = {1, 3}

F ′ = {{1}, {1, 2}, {1, 3}, {1, 2, 3}}
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Nondeterminism Equivalence of NFAs and DFAs

Equivalence of NFAs and DFAs

Example (DFA D that is equivalent to the NFA N4)

∅ {1} {2} {1, 2}

{3} {1, 3} {2, 3} {1, 2, 3}

a,b a b

b a
a,b

b

a a

b

b

a

b

a
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Nondeterminism Equivalence of NFAs and DFAs

Equivalence of NFAs and DFAs

Example (DFA D after removing unnecessary states)

No arrows point at states {1} and {1, 2}

They may be removed without affecting the performance of DFA.

{1, 3} {3} ∅

{2} {2, 3} {1, 2, 3}

a,b

b

a

ba

a

b b
a

b

a
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Nondeterminism Closure Under the Regular Operations

Closure Under the Regular Operations

Theorem
The class of regular languages is closed under the union operation.

Proof.
Let N1 = (Q1,Σ, δ1, q1, F1) recognize A1, and

N2 = (Q2,Σ, δ2, q2, F2) recognize A2.

Construct N = (Q,Σ, δ, q0, F ) to recognize A1 ∪A2.

1 Q = {q0} ∪Q1 ∪Q2

2 q0 is the start state of N

3 F = F1 ∪ F2

4 For any q ∈ Q and any a ∈ Σε

δ(q, a) =


δ1(q, a) q ∈ Q1

δ2(q, a) q ∈ Q2

{q1, q2} q = q0 and a = ε

∅ q = q0 and a 6= ε
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Nondeterminism Closure Under the Regular Operations

Closure Under the Regular Operations

Construction of an NFA N to recognize A1 ∪A2

N1

N2

N

ε

ε
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Closure Under the Regular Operations

Construction of an NFA N to recognize A1 ∪A2

N1

N2

N

ε

ε
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Nondeterminism Closure Under the Regular Operations

Closure Under the Regular Operations

Theorem
The class of regular languages is closed under the concatenation operation.

Proof.
Let N1 = (Q1,Σ, δ1, q1, F1) recognize A1, and

N2 = (Q2,Σ, δ2, q2, F2) recognize A2.

Construct N = (Q,Σ, δ, q1, F2) to recognize A1 ◦A2.

1 Q = Q1 ∪Q2

2 q1 is the same as the

start state of N1

3 The accept states F2

are the same as the

accept states of N2

4 For any q ∈ Q and any a ∈ Σε

δ(q, a) =


δ1(q, a) q ∈ Q1 and q /∈ F1

δ1(q, a) q ∈ F1 and a 6= ε

δ1(q, a) ∪ {q2} q ∈ F1 and a = ε

δ2(q, a) q ∈ Q2
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Nondeterminism Closure Under the Regular Operations

Closure Under the Regular Operations

Construction of N to recognize A1 ◦A2

N1 N2

N
ε
ε
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Nondeterminism Closure Under the Regular Operations

Closure Under the Regular Operations

Theorem
The class of regular languages is closed under the star operation.

Proof.
Let N1 = (Q1,Σ, δ1, q1, F1) recognize A1.

Construct N = (Q,Σ, δ, q0, F ) to recognize A∗1.

1 Q = {q0} ∪Q1

2 q0 is the new

start state.

3 F = {q0} ∪ F1

4 For any q ∈ Q and any a ∈ Σε

δ(q, a) =



δ1(q, a) q ∈ Q1 and q /∈ F1

δ1(q, a) q ∈ F1 and a 6= ε

δ1(q, a) ∪ {q1} q ∈ F1 and a = ε

{q1} q = q0 and a = ε

∅ q = q0 and a 6= ε
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