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A Computational Model

The theory of computation begins with a question:

What is a computer? ]

o Computational model: an idealized computer.
@ Several different computational models

o Finite automata or finite state machine 5% BTl
o Pushdown automata T B EIH
Linear-bounded automata %8R BTN

o Turing machine BER#l
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Finite Automata

Outline

© Finite Automata
@ Formal Definition of a Finite Automaton
@ Examples of Finite Automata
@ Formal Definition of Computation
@ Designing Finite Automata

@ The Regular Operations
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Finite Automata

Example: An Automatic Door
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Finite Automata

Example: A Finite Automaton

Example (A finite automaton M)

o the state diagram of M,
@ three states: ¢i, g2, and g3
o the start state: ¢

o the accept state: ¢

@ transitions: the arrows going from one state to another

Yajun Yang (TJU) 1 Regular Languages (Part 1 of 2) 2015 7 / 66



Finite Automata

Example: A Finite Automaton

Example (A finite automaton M)

0 1
OBmOBO
0,1

Yajun Yang (TJU) 1 Regular Languages (Part 1 of 2) 2015 8/ 66



Finite Automata

Example: A Finite Automaton

Example (A finite automaton M)

0 1
OBmOBO
0,1

Feed the input string 1101 to the machine M;

Yajun Yang (TJU) 1 Regular Languages (Part 1 of 2) 2015 8/ 66



Finite Automata

Example: A Finite Automaton

Example (A finite automaton M)

0 1
OBmOBO
0,1

© Start in state ¢;

Feed the input string 1101 to the machine M;

Yajun Yang (TJU) 1 Regular Languages (Part 1 of 2) 2015 8/ 66



Finite Automata

Example: A Finite Automaton

Example (A finite automaton M)

0 1
OBmOBO
0,1

© Start in state ¢;

Feed the input string 1101 to the machine M;

@ Read 1, follow transition from ¢; to go

Yajun Yang (TJU) 1 Regular Languages (Part 1 of 2) 2015 8/ 66



Finite Automata

Example: A Finite Automaton

Example (A finite automaton M)
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Finite Automata

Example: A Finite Automaton

Example (A finite automaton M)

0 1
OBmOBO
0,1

© Start in state ¢;

Feed the input string 1101 to the machine M;

@ Read 1, follow transition from ¢; to go
© Read 1, follow transition from ¢o to ¢o

@ Read 0, follow transition from ¢ to g3
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Finite Automata

Example: A Finite Automaton

Example (A finite automaton M)

0 1
OBmOBO
0,1

Start in state ¢;

Feed the input string 1101 to the machine M;

Read 1, follow transition from ¢; to ¢
Read 1, follow transition from ¢ to go

Read 0, follow transition from ¢o to g3

© ©6 0 © O

Read 1, follow transition from g3 to ¢
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Finite Automata

Example: A Finite Automaton

Example (A finite automaton M)

0 1
OBmOBO
0,1

Start in state ¢;

Feed the input string 1101 to the machine M;

Read 1, follow transition from ¢; to ¢
Read 1, follow transition from ¢ to go
Read 0, follow transition from ¢o to g3

Read 1, follow transition from g3 to ¢

© 0 6 0 © O

Accept because M is in an accept state ¢o at the end of the input
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Formal Definition of a Finite Automaton

Definition (DFA (i H 55 HshHl))
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Formal Definition of a Finite Automaton

Definition (DFA (i H 55 HshHl))
A deterministic finite automaton (DFA) is a 5-tuple (Q, >, 0, qo, F),

where
© Q is a finite set called the states,
@ X is a finite set called the alphabet,
Q 0:Q x X — (@ is the transition function,

Q o € Q is the start state, and
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Finite Automata Formal Definition of a Finite Automaton

Formal Definition of a Finite Automaton

Definition (DFA (i H 55 HshHl))
A deterministic finite automaton (DFA) is a 5-tuple (Q, >, 0, qo, F),

where
© Q is a finite set called the states,
@ X is a finite set called the alphabet,
Q 0:Q x X — (@ is the transition function,
Q qo € Q is the start state, and

@ F C (Q is the set of accept states.
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Finite Automata Formal Definition of a Finite Automaton

Using the Definition of DFA

Example (A finite automaton M)
1

v
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Finite Automata Formal Definition of a Finite Automaton

Using the Definition of DFA

Example (A finite automaton M)

1
01 M, =(Q,%,9,q1, F), where

(1] Q = {q17q27Q3}

v
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Finite Automata Formal Definition of a Finite Automaton

Using the Definition of DFA

Example (A finite automaton M)

Ml = (szvd’ Q17F)' where

o Q = {q17q27Q3}
@ x—{0,1}

v
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Finite Automata Formal Definition of a Finite Automaton

Using the Definition of DFA

Example (A finite automaton M)

0 1
OmOBO
0,1

O Q={q1, 9,9}
Q@ X={0,1}
© 0 is described as: §(q1,0) =q1, (q1,1) = go,
6(g2,0) = g3, 6(g2,1) = g2, 6(g3,0) = g2, 0(g3,1) =2

Ml = (szvd’ Q17F)' where

v
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Finite Automata Formal Definition of a Finite Automaton

Using the Definition of DFA

Example (A finite automaton M)

0 1
1 [} o
ORoeo
Q Q={q,1, 9}
Q@ ¥ ={0,1}

© 0 is described as: §(q1,0) =q1, (q1,1) = go,
6(q2,0) = g3, 6(q2,1) = g2, 6(g3,0) = g2, d(g3,1) = g2

Ml = (szvd’ Q17F)' where

@ ¢ is the start state, and

v
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Finite Automata Formal Definition of a Finite Automaton

Using the Definition of DFA

Example (A finite automaton M)

0 1
OmOBO
0,1
o Q = {q17q27Q3}
Q@ X={0,1}
© 0 is described as: §(q1,0) =q1, (q1,1) = go,
0(q2,0) = g3, 6(g2,1) = g2, 0(q3,0) = g2, 0(g3,1) = @2

@ ¢ is the start state, and

QO F={¢} |

Ml = (szvd’ Q17F)' where
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Finite Automata Formal Definition of a Finite Automaton

Language of DFA

@ If A is the set of all strings that machine M accepts, we say that A is
the language of machine M and write L(M) = A.
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Finite Automata Formal Definition of a Finite Automaton

Language of DFA

@ If A is the set of all strings that machine M accepts, we say that A is
the language of machine M and write L(M) = A.

@ We say that M recognizes A.

@ A machine may accept several strings, but it always recognizes only

one language.

@ What about the machine accepts no strings?
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Finite Automata Formal Definition of a Finite Automaton

Language of DFA M,
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Finite Automata Formal Definition of a Finite Automaton

Language of DFA M,

A = {w | w contains at least one 1 and

an even number of Os follow the last 1 }
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Finite Automata Examples of Finite Automata

Example: DFA M,

DFA M,
0 1
1
0
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Finite Automata Examples of Finite Automata

Example: DFA M,

DFA M,
0 1 My = ({q1,42},{0,1},0,q1,{q2})
1
OSOR.
0
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Example: DFA M,

Finite Automata Examples of Finite Automata

DFA M>
0 1 M = ({q1,92},{0,1},6, q1, {ga})
1
(o 1) :
0
L(Mp) =?
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Example: DFA M,

Finite Automata Examples of Finite Automata

DFA M>
0 1 M = ({q1,92},{0,1},6, q1, {ga})
1
(o 1) :
0
L(Msy) =7
try 1101,
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Example: DFA M,

DFA M,
0 1
(v L 1)
0

Finite Automata Examples of Finite Automata

My = ({q1,42},{0,1},0,q1,{q2})

L(My) =?
try 1101, try 110
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Example: DFA M,

DFA M,
0 1
(v L 1)
0

Finite Automata Examples of Finite Automata

My = ({q1,42},{0,1},0,q1,{q2})

L(My) =?
try 1101, try 110

L(M3) ={w | wendsinal}

Yajun Yang (TJU)
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Finite Automata Examples of Finite Automata

Example: DFA Mj;

0 1 M; = ({QLQQ}:{O?l}ad: qlv{ql})

L(M;) =?

L(Ms3) = {w | w is the empty string € or ends in a 0} J

Yajun Yang (TJU) 1 Regular Languages (Part 1 of 2) 2015 14 / 66



Finite Automata Examples of Finite Automata

Example: DFA M;

0 1 M; = ({QLQQ}:{O?l}ad: qlv{ql})

L(M;) =?

L(Ms3) = {w | w is the empty string € or ends in a 0} ]

What is the relationship between L(M3) and L(M3)?
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Example: DFA M,
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Example: DFA M,
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Finite Automata Examples of Finite Automata

Example: DFA M,

L(My4) = {w | w starts and ends with the same symbol }
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Finite Automata Examples of Finite Automata

Example: DFA M;

0, <RESET>

1, <RESET>
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Finite Automata Examples of Finite Automata

Example: DFA M;

0, <RESET>

1, <RESET>

L(Ms) =
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Finite Automata Examples of Finite Automata

Example: Generalization of Mj

o ¥ = {<RESET>, 0, 1, 2}
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Example: Generalization of Mj

o ¥ = {<RESET>, 0, 1, 2}

@ For each i > 1 let A; be the language of all strings where the sum of
the numbers is a multiple of 4, except that the sum is reset to 0
whenever the symbol <RESET > appears.
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Example: Generalization of Mj

o ¥ = {<RESET>, 0, 1, 2}

@ For each i > 1 let A; be the language of all strings where the sum of
the numbers is a multiple of 4, except that the sum is reset to 0
whenever the symbol <RESET > appears.
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Finite Automata Examples of Finite Automata

Example: Generalization of Mj

e ¥ ={<RESET>, 0, 1, 2}

@ For each i > 1 let A; be the language of all strings where the sum of
the numbers is a multiple of 4, except that the sum is reset to 0
whenever the symbol <RESET > appears.

@ For each A; we give a DFA B;, recognizing A;.

o B’L = {Qu E7 6i7 q0, {QO}}

° Qi = {q07q17 qz, ... 7qi71}
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Finite Automata Examples of Finite Automata

Example: Generalization of Mj

o ¥ = {<RESET>, 0, 1, 2}

@ For each i > 1 let A; be the language of all strings where the sum of
the numbers is a multiple of 4, except that the sum is reset to 0
whenever the symbol <RESET > appears.

@ For each A; we give a DFA B;, recognizing A;.
o B’L = {Qu E7 6i7 q0, {QO}}

° Qi = {QO,(Ih q2, - - - 7qi71}
o We design the transition function d; so that for each j, if B; is in g,

the running sum is j, modulo i.
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Finite Automata Examples of Finite Automata

Example: Generalization of Mj

o ¥ = {<RESET>, 0, 1, 2}

@ For each i > 1 let A; be the language of all strings where the sum of
the numbers is a multiple of 4, except that the sum is reset to 0
whenever the symbol <RESET > appears.

o For each A; we give a DFA B;, recognizing A;.
° B; ={Qi,%,di,q,{q}}
° Qi ={q,q1,92,---,¢i-1}
o We design the transition function d; so that for each j, if B; is in g,
the running sum is j, modulo i.
° 0i(g;,0) = g
0i(gj,1) = qi, where k = j + 1 modulo i
0:(gj,2) = qi, where k = j + 2 modulo i
di(gqj, <RESET>) = qo
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Finite Automata Formal Definition of Computation

Formal Definition of Computation for a DFA

o Let M =(Q,X%,6,q0, F) be a DFA.
o Let w = ajas...a, be a string where a; € X.

@ Then M accepts w if a sequence of states rg,71,...,7, in Q exists

with three conditions:
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Finite Automata Formal Definition of Computation

Formal Definition of Computation for a DFA

o Let M =(Q,X%,6,q0, F) be a DFA.
o Let w = ajas...a, be a string where a; € X.

@ Then M accepts w if a sequence of states rg,71,...,7, in Q exists

with three conditions:

Q@ ro=q
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Finite Automata Formal Definition of Computation

Formal Definition of Computation for a DFA

o Let M =(Q,X%,6,q0, F) be a DFA.
o Let w = ajas...a, be a string where a; € X.

@ Then M accepts w if a sequence of states rg, 1,

with three conditions:

Q 70=q
9 5(7“2',0,1'4_1) =Ti+1, fOFiZO,...,TL—l
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Finite Automata Formal Definition of Computation

Formal Definition of Computation for a DFA

o Let M =(Q,X%,6,q0, F) be a DFA.
o Let w = ajas...a, be a string where a; € X.

@ Then M accepts w if a sequence of states rg, 1,
with three conditions:
Q 70=q
e 5(7“2',0,1'4_1) = Ti+1, fori= O7 NN 1
Q@r,eF
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Finite Automata Formal Definition of Computation

Formal Definition of Computation for a DFA

o Let M =(Q,X%,6,q0, F) be a DFA.
o Let w = ajas...a, be a string where a; € X.

@ Then M accepts w if a sequence of states rg,71,...,7, in Q exists

with three conditions:

Q 70=q
@ 0(ri,ait1) =7ri41, fori=0,...,n—1
Q@ r,er
We say that M recognizes language A if A = {w | M accepts w} ]
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Finite Automata Formal Definition of Computation

Regular Language

Definition (regular language)

A language is called a regular language if some DFA recognizes it.
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Finite Automata Formal Definition of Computation

Regular Language

Definition (regular language)

A language is called a regular language if some DFA recognizes it.

SENE
o Take DFA Mj5

e w =10<RESET>22<RESET>012

A,
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Finite Automata Formal Definition of Computation

Regular Language

Definition (regular language)

A language is called a regular language if some DFA recognizes it.

SENE
o Take DFA Mj5

e w =10<RESET>22<RESET>012
@ The sequence of states M5 enters when computing on w is

q0, 41,41, 90, 92, 41, 40, 90, 41, 40
which satisfies the three conditions.

A,
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Finite Automata Formal Definition of Computation

Regular Language

Definition (regular language)

A language is called a regular language if some DFA recognizes it.

SENE
o Take DFA Mj5

e w =10<RESET>22<RESET>012
@ The sequence of states M5 enters when computing on w is

40,491,491, 490,492,491, 490, 90, 491, 90
which satisfies the three conditions.

L(Ms) = {w | the sum of the symbols in w is 0 modulo 3,

except that <RESET> resets the count to 0 }

v
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Finite Automata Designing Finite Automata

Designing Finite Automata

An approach helpful: “reader as automaton"

@ put yourself in the place of the machine you are trying to design

@ and then see how you would go about performing the machine's task
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Finite Automata Designing Finite Automata

Designing Finite Automata

An approach helpful: “reader as automaton"

@ put yourself in the place of the machine you are trying to design

@ and then see how you would go about performing the machine’s task

v

o X ={0,1}

@ The language consists of all strings with an odd number of 1s.

@ Construct a finite automaton F; to recognize this language.
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Finite Automata Designing Finite Automata

Designing Finite Automata

e X ={0,1}

@ The language consists of all strings with an odd number of 1s.

@ Construct a finite automaton F; to recognize this language.
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Finite Automata Designing Finite Automata

Designing Finite Automata

e X ={0,1}

@ The language consists of all strings with an odd number of 1s.
@ Construct a finite automaton F; to recognize this language.

©Q Goven: even so far

Q ¢oqq: 0dd so far
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Finite Automata Designing Finite Automata

Designing Finite Automata

SENE
e X =101}
@ The language consists of all strings with an odd number of 1s.
@ Construct a finite automaton F; to recognize this language.

©Q Goven: even so far

Q ¢oqq: 0dd so far
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Finite Automata Designing Finite Automata

Designing Finite Automata

SENE
e X =401}
@ The language consists of all strings with an odd number of 1s.
@ Construct a finite automaton F; to recognize this language.

@ ¢oven: even so far

Q ¢oqq4: 0dd so far

A\

DFA E;

1
@
1
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Finite Automata Designing Finite Automata

Designing Finite Automata

SEE
e X =401}
@ The language consists of all strings with an odd number of 1s.
@ Construct a finite automaton F; to recognize this language.

@ ¢even: even so far

Q ¢oqq4: 0dd so far

A

DFA E;

V.

Yajun Yang (TJU) 1 Regular Languages (Part 1 of 2) 2015 23 / 66



Finite Automata Designing Finite Automata

Designing Finite Automata

o ¥ ={0,1}

@ The language of all strings that contain the string 001 as a substring.

@ To design a finite automaton Es to recognize this language.
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@ The language of all strings that contain the string 001 as a substring.
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Finite Automata Designing Finite Automata

Designing Finite Automata

@ The language of all strings that contain the string 001 as a substring.

@ ¢: haven't just seen any symbols of the pattern
© ¢o: have just seen a 0
© oo : have just seen 00

@ qoo1: have seen the entire pattern 001
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Finite Automata Designing Finite Automata

Designing Finite Automata

Example

@ The language of all strings that contain the string 001 as a substring.
@ ¢: haven't just seen any symbols of the pattern
© ¢o: have just seen a 0
© qoo : have just seen 00

@ qoo1: have seen the entire pattern 001

ORROOINO
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Finite Automata Designing Finite Automata

Designing Finite Automata

SENE

@ The language of all strings that contain the string 001 as a substring.

@ ¢: haven't just seen any symbols of the pattern
© ¢o: have just seen a 0

© qoo : have just seen 00

@ qoo1: have seen the entire pattern 001

2ONNORRONNO
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Finite Automata Designing Finite Automata

Designing Finite Automata

SEE
@ The language of all strings that contain the string 001 as a substring.
@ ¢: haven't just seen any symbols of the pattern
© qo: have just seen a 0
© qoo : have just seen 00
© qoo1: have seen the entire pattern 001

v

DFA E5

1
0
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Designing Finite Automata

@ The language of all strings that contain the string 001 as a substring.

@ ¢: haven't just seen any symbols of the pattern
© ¢o: have just seen a 0

© qoo : have just seen 00

@ qoo1: have seen the entire pattern 001

DFA Ey

1
0
200 O
1
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Finite Automata Designing Finite Automata

Designing Finite Automata

@ The language of all strings that contain the string 001 as a substring.

@ ¢: haven't just seen any symbols of the pattern
© ¢o: have just seen a 0

© qoo : have just seen 00

@ qoo1: have seen the entire pattern 001

v

DFA Ey

1 0
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Finite Automata Designing Finite Automata

Designing Finite Automata

SENE
@ The language of all strings that contain the string 001 as a substring.
@ ¢: haven't just seen any symbols of the pattern
@ ¢o: have just seen a 0

© qoo : have just seen 00

@ qoo1: have seen the entire pattern 001

DFA E,
1 0 Gz
0
1

v
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Finite Automata The Regular Operations

The Regular Operations

Definition (regular operations)
Let A and B be language. We define the regular operations union,

concatenation, and star as follows:
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The Regular Operations

Definition (regular operations)
Let A and B be language. We define the regular operations union,
concatenation, and star as follows:

e Union: AUB={x|x€ Aorxe B}
e Concatenation: Ao B={zy|xz € Aandy € B}
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Finite Automata The Regular Operations

The Regular Operations

Definition (regular operations)
Let A and B be language. We define the regular operations union,
concatenation, and star as follows:

e Union: AUB={x|x€ Aorxe B}
e Concatenation: Ao B ={zy|z € A and y € B}

o Star: A* = {z1x2...2% | k>0 and each z; € A}
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The Regular Operations

SENE
Let the alphabet ¥ be the standard 26 letters {a, b, ..., z}.

If A= { good, bad} and B = {boy, girl}, then
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The Regular Operations

SENE
Let the alphabet ¥ be the standard 26 letters {a, b, ..., z}.

If A= { good, bad} and B = {boy, girl}, then
e AU B = {good, bad, boy, girl}
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Finite Automata The Regular Operations

The Regular Operations

Let the alphabet ¥ be the standard 26 letters {a, b, ..., z}.
If A= { good, bad} and B = {boy, girl}, then

e AU B = {good, bad, boy, girl}
e Ao B = {goodboy, goodgirl, badboy, badgirl}
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Finite Automata The Regular Operations

The Regular Operations

Let the alphabet X be the standard 26 letters {a, b, ..., z}.
If A= { good, bad} and B = {boy, girl}, then

e AU B = {good, bad, boy, girl}
e Ao B = {goodboy, goodgirl, badboy, badgirl}

o A* = {e, good, bad, goodgood, goodbad, badgood, badbad,
goodgoodgood, goodgoodbad, goodbadgood, goodbadbad,. .. }

Yajun Yang (TJU) 1 Regular Languages (Part 1 of 2) 2015 32/ 66



Finite Automata The Regular Operations

The Regular Operations

Closed
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Finite Automata The Regular Operations

The Regular Operations

Closed

The class of regular languages is closed under the union operation.

In other words, if Ay and Ay are regular languages, so is A1 U As.

Proof.

A\ |
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Finite Automata The Regular Operations

The Regular Operations

Closed

The class of regular languages is closed under the union operation.

In other words, if Ay and Ay are regular languages, so is A1 U As.

Let M, recognize A, where My = (Q1,%, 61,41, F1), and
My recognize Ag, where My = (Q2, %, 02, g2, F3).

v
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Finite Automata The Regular Operations

The Regular Operations

Closed

The class of regular languages is closed under the union operation.

In other words, if Ay and Ay are regular languages, so is A1 U As.
Let M, recognize A, where My = (Q1,%, 61,41, F1), and

My recognize Ag, where My = (Q2, %, 02, g2, F3).
Construct M to recognize A1 U Ay, where M = (Q, 3, 0, qo, F).
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Finite Automata The Regular Operations

The Regular Operations

Closed

The class of regular languages is closed under the union operation.

In other words, if Ay and Ay are regular languages, so is A1 U As.

Let M, recognize A, where My = (Q1,%, 61,41, F1), and
My recognize Ag, where My = (Q2, %, 02, g2, F3).
Construct M to recognize A1 U Ay, where M = (Q, 3, 0, qo, F).

Q Q = {(7‘1,7“2) | r € Q1 and ro € QQ}

v
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Finite Automata The Regular Operations

The Regular Operations

Closed

The class of regular languages is closed under the union operation.

In other words, if Ay and Ay are regular languages, so is A1 U As.

Let M, recognize A, where My = (Q1,%, 61,41, F1), and
My recognize Ag, where My = (Q2, %, 02, g2, F3).
Construct M to recognize A1 U Ay, where M = (Q, 3, 0, qo, F).
QO Q= {(7‘1,7“2) | r1 € Q1 and ry € QQ}
@ X is the same as in M; and M>

Ol

v
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Finite Automata The Regular Operations

The Regular Operations

The class of regular languages is closed under the union operation.

In other words, if A7 and A, are regular languages, so is A1 U As.
Proof.
© For each (r1,r2) € Q and each a € X, let
6((r1,72),a) = (61(r1,0a), 62(r2, @)
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Finite Automata The Regular Operations

The Regular Operations

The class of regular languages is closed under the union operation.

In other words, if A7 and A, are regular languages, so is A1 U As.

Proof.
© For each (r1,r2) € Q and each a € X, let

0((r1,72),a) = (01(r1, a), d2(r2, a))
Q qo is the pair (g1, ¢2)
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Finite Automata The Regular Operations

The Regular Operations

The class of regular languages is closed under the union operation.

In other words, if A7 and A, are regular languages, so is A1 U As.

Proof.
© For each (r1,r2) € Q and each a € X, let

6((r1,m2),a) = (81(r1,a), 02(r2, a))
Q o is the pair (q1,42)
Q@ F={(r1,r2) | r1 € F1 or ry € F}
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Finite Automata The Regular Operations

The Regular Operations

The class of regular languages is closed under the concatenation operation.

In other words, if A1 and Ay are regular languages, so is A1 o As.
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Finite Automata The Regular Operations

The Regular Operations

The class of regular languages is closed under the concatenation operation.

In other words, if A1 and Ay are regular languages, so is A1 o As.

Problem: M doesn’t know where to break the input string?
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Nondeterminism

Outline

e Nondeterminism
@ Formal Definition of a Nondeterministic Finite Automaton
@ Equivalence of NFAs and DFAs

@ Closure Under the Regular Operations
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Nondeterminism

Nondeterminism IEFEE M

o Determinism: When the machine is in a given state and reads the
next input symbol, we know what the next state will be it is

determined. We call this deterministic computation.

o Nondeterminism: In a nondeterministic machine, several choices

may exist for the next state at any point.
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Nondeterminism

Nondeterminism IEFEE M

o Determinism: When the machine is in a given state and reads the
next input symbol, we know what the next state will be it is

determined. We call this deterministic computation.

Nondeterminism: In a nondeterministic machine, several choices

may exist for the next state at any point.

@ Nondeterminism is a generalization of determinism,

so every deterministic finite automaton is automatically a

nondeterministic finite automaton.
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Nondeterminism

Nondeterministic Finite Automata

NFA Ny

@ Nondeterministic finite automata may have additional features.

01 0,1

%(111@0'5@1
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Nondeterminism

Nondeterministic Finite Automata

NFA Ny

@ Nondeterministic finite automata may have additional features.

0.1 0,1

e 1 @ 0. @ 1

e DFA: deterministic finite automaton #iEZI B BN

o NFA: nondeterministic finite automaton IEFBEE B BEEIHL
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Nondeterminism

e DFA:
@ every state of a DFA always has exactly one exiting transition arrow for
each symbol in the alphabet.
o NFA:

@ a state may have zero, one, or many exiting arrows for each alphabet

symbol.

@ an NFA may have arrows labeled with members of the alphabet or e.

v
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Nondeterminism

Deterministic and Nondeterministic Computations

Deterministic Nondeterministic
computation computation

e start o start

ﬁ Y
/\\
I

. rejecte e

e accept or reject e accept
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Nondeterminism

How Does an NFA Compute?

Symbol read Start

Yajun Yang (TJU) 1 Regular Languages (Part 1 of 2) 2015 41 / 66



Nondeterminism
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Nondeterminism

e L(Ny) =7 {w | w contain either 101 or 11 as a substring} J
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Nondeterminism

Example: NFA N,

@ The language A:

o {the language consisting of all strings over {0,1} containing a 1 in the
third position from the end}
e e.g., 000100 € A, 0011 ¢ A
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Nondeterminism

Example: NFA N,

@ The language A:

o {the language consisting of all strings over {0,1} containing a 1 in the
third position from the end}
e e.g., 000100 € A, 0011 ¢ A

Example (NFA N5)
01
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Nondeterminism

Example: NFA N,

@ The language A:

o {the language consisting of all strings over {0,1} containing a 1 in the
third position from the end}
e e.g., 000100 € A, 0011 ¢ A

Example (NFA N5)
01

L(N) = A
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Nondeterminism

Example: NFA N,

Every NFA can be converted into an equivalent DFA.

Example (The equivalent DFA of NFA Ns)
0
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Nondeterminism

Example: NFA Nj

The convenience of having ¢ arrows

Example (NFA N3)

v
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Nondeterminism

Example: NFA Nj

The convenience of having ¢ arrows

Example (NFA N3)

L(N3) = {all strings of the form 0% where k is a multiple of 2 or 3. }

v
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Nondeterminism

Example: NFA N,

Example (NFA Ny)
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Nondeterminism

Example: NFA N,

Example (NFA Ny)

@ it accepts the strings ¢, a, baba, baa

@ it accepts it doesn’t accept the strings b, bb, babba
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Nondeterminism Formal Definition of a Nondeterministic Finite Automaton

Formal Definition of a Nondeterministic Finite Automaton

Definition (NFA)
A nondeterministic finite automaton (NFA) is a 5-tuple (Q, X, 6, qo, F),

where
Q@ Q is a finite set of states,
@ X is a finite alphabet,
Q J:Q x X, — P(Q) is the transition function,

Q@ qo € Q is the start state, and

@ F C (@ is the set of accept states.

@ P(Q) is the power set of Q)
o ¥, =XU{e}
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Nondeterminism Formal Definition of a Nondeterministic Finite Automaton

Example: The Formal Definition of NFA NV,

Example (Recall the NFA Ny)
01 0,1

L a 1 @ 0. @ 1

Nl = (Q32767 qlvF)' Where

° Q={q1,92,q3,q4} 0 1 €
o ¥ =1{0,1} @ | {a} {g.e} 0
a2 | {as} 0 {g5}
q3 0 {qa} 1]
g1 | {aa}  {aa} 0

@ 0 is given as

q1 is the start state

S {CI4}

Yajun Yang (TJU) 1 Regular Languages (Part 1 of 2) 2015 48 / 66
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Nondeterminism Formal Definition of a Nondeterministic Finite Automaton

Formal Definition of Computation for an NFA

o Let N =(Q,%,0,q0, F) be an NFA.

@ Let w be a string over X.

@ Then N accepts w if we can write w as w = ajas - - - a,, Where

a; € X and a sequence of states rg,r1,..., 7, exists in () with three
conditions:

Q@ n=q

o Ti+1 E(S(Ti,ai+1), fOFiZO,...,TL—l

Q@r,eF
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Nondeterminism Equivalence of NFAs and DFAs

Equivalence of NFAs and DFAs

DFA and NFA recognize the same class of languages.
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@ Surprising: NFAs appear to have more power than DFAs, so we might

expect that NFAs recognize more languages
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Nondeterminism Equivalence of NFAs and DFAs

Equivalence of NFAs and DFAs

DFA and NFA recognize the same class of languages.
@ Surprising: NFAs appear to have more power than DFAs, so we might
expect that NFAs recognize more languages
@ Useful: describing an NFA for a given language sometimes is much

easier than describing a DFA for that language
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Nondeterminism Equivalence of NFAs and DFAs

Equivalence of NFAs and DFAs

DFA and NFA recognize the same class of languages.
@ Surprising: NFAs appear to have more power than DFAs, so we might
expect that NFAs recognize more languages
@ Useful: describing an NFA for a given language sometimes is much

easier than describing a DFA for that language

Say that two machines are equivalent if they recognize the same language. \

2015 50 / 66
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Nondeterminism Equivalence of NFAs and DFAs

Equivalence of NFAs and DFAs

Every nondeterministic finite automaton has an equivalent deterministic

finite automaton.
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Nondeterminism Equivalence of NFAs and DFAs

Equivalence of NFAs and DFAs

Theorem
Every nondeterministic finite automaton has an equivalent deterministic

finite automaton.

Proof.
o Let N = (Q,%,9,qo, F) be the NFA recognizing some language A.

| \

e We construct a DFA M = (Q', X, ¢, q)), F') recognizing A.

@ Before doing the full construction, let's first consider the easier case

wherein N has no € arrows. Later we take the £ arrows into account.

Ol

v
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Nondeterminism Equivalence of NFAs and DFAs

Equivalence of NFAs and DFAs

Theorem

Every nondeterministic finite automaton has an equivalent deterministic

finite automaton.

Proof.
Q0 Q' =PQ)
@ For Re @ and a € %,
8 (R,a) ={qe Q| qed(ra) for some r € R}

| A\

§'(R,a) = | Jd(r,a)

Ol

v
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Nondeterminism Equivalence of NFAs and DFAs

Equivalence of NFAs and DFAs

Theorem

Every nondeterministic finite automaton has an equivalent deterministic

finite automaton.

0 ¢ = {a}
Q@ F'={R e Q| R contains an accept state of N}

\
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Nondeterminism Equivalence of NFAs and DFAs

Equivalence of NFAs and DFAs

Now we need to consider the £ arrows.
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Nondeterminism Equivalence of NFAs and DFAs

Equivalence of NFAs and DFAs

Proof.
Now we need to consider the £ arrows.

@ For any state R of M,
E(R) = {q| q can be reached from R by traveling along 0 or more &
arrows}
o E(R) is the collection of states that can be reached from members of R

by going only along & arrows, including the members of R themselves.
o Y(R,a)={q€Q|qe E((r,a)) for some r € R}

° ¢y = E({q})

v
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Nondeterminism Equivalence of NFAs and DFAs

Equivalence of NFAs and DFAs

Proof.
Now we need to consider the £ arrows.

@ For any state R of M,
E(R) = {q| q can be reached from R by traveling along 0 or more &

arrows}
o E(R) is the collection of states that can be reached from members of R

by going only along & arrows, including the members of R themselves.
o Y(R,a)={q€Q|qe E((r,a)) for some r € R}
° ¢p = E({q})
We have now completed the construction of the DFA M that simulates

the NFA N. uj
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Nondeterminism Equivalence of NFAs and DFAs

Equivalence of NFAs and DFAs

Theorem

Every nondeterministic finite automaton has an equivalent deterministic

finite automaton.

Corollary

| \

A language is regular if and only if some nondeterministic finite automaton

recognizes it.

A\
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Nondeterminism Equivalence of NFAs and DFAs

Equivalence of NFAs and DFAs

Example (NFA Ny)

NFA Ny = (Q, %, 0, qo, F)
e Q=1{1,2,3}
e ¥ ={a, b}
()
e qo=1
o F={1}
Construct a DFA D that is equivalent to Ny
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Nondeterminism Equivalence of NFAs and DFAs

Equivalence of NFAs and DFAs

NFA N4 = (Q72767q07F)

DFA D = (Q',%,¥, q), F')

v
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Nondeterminism Equivalence of NFAs and DFAs

Equivalence of NFAs and DFAs

NFA N4 = (Q72767q07F)

DFA D = (Q',%,¥, q), F')
o Q' ={0,{1},{2}, {3}, {1,2},{1,3},{2,3}, {1,2,3}}
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Nondeterminism Equivalence of NFAs and DFAs

Equivalence of NFAs and DFAs

NFA N4 = (Q72767q07F)

DFA D = (Q',%,¥, q), F')

o Q' ={0,{1},{2}, {3}, {1,2},{1,3},{2,3}, {1,2,3}}
e X ={a, b}

v
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Nondeterminism Equivalence of NFAs and DFAs

Equivalence of NFAs and DFAs

NFA N4 = (Q72767q07F)

DFA D = (Q',%,¥, q), F')
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Equivalence of NFAs and DFAs

NFA N4 = (Q72767q07F)

DFA D = (Q’,E,é’,q(’),F’)
o @ ={0,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
o ¥ =1{a, b}
° ¢y = E({q0}) = E({1}) = {1,3}
o F'={{1}{1,2},{1,3},{1,2,3}}
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Equivalence of NFAs and DFAs

Example (DFA D that is equivalent to the NFA Ny)
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Nondeterminism Equivalence of NFAs and DFAs

Equivalence of NFAs and DFAs

Example (DFA D after removing unnecessary states)

@ No arrows point at states {1} and {1, 2}

@ They may be removed without affecting the performance of DFA.

a,b

a
0
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Closure Under the Regular Operations

The class of regular languages is closed under the union operation.
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Ny = (Q2, %, 02, ga, F) recognize As.
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Closure Under the Regular Operations

The class of regular languages is closed under the union operation.

Proof.

Let N1 = (Q1,%, 61, ¢1, F1) recognize Ap, and

No = (Q2, X, 02, g2, Fy) recognize A,.

Construct N = (@, X, 0, qo, F') to recognize A; U As.

QO Q={qlUu@1UQ, © Foranyge @ and any a € X,

@ (o is the start state of N
01(g,a) g€

d2(q,a) q € Q2
{a1,2} ¢=q anda=c¢
1) g=qoand a #¢

Q@ F=FUF,
d(g,a) =

v
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Closure Under the Regular Operations

Construction of an NFA N to recognize A; U Ao
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Closure Under the Regular Operations

Construction of an NFA N to recognize A; U Ao

Ny

O
OO©
o O
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Closure Under the Regular Operations

The class of regular languages is closed under the concatenation operation.
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Closure Under the Regular Operations

The class of regular languages is closed under the concatenation operation.

Let M1 = (Q1,%, 61, ¢1, F1) recognize Ap, and
No = (Q2,%, 62, q2, F») recognize Aj.
Construct N = (@, X, 0, q1, F») to recognize A; o As.

QO Q=Q1UQ> Q Forany g€ Q and any a € X,
@ ¢ is the same as the 5 ; . L]
) €
start state of N} 1(g,0) geQiand g ¢ Fy
5(q,a) d1(g, a) g€ anda#e¢
q,a) =
© The accept states Fy 51(0.0) U g} geFandazc
are the same as the
b2(q,a) q€ Q2

accept states of Ny
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Closure Under the Regular Operations

The class of regular languages is closed under the star operation.
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The class of regular languages is closed under the star operation.

Let N1 = (Q1,%, 01, ¢1, F1) recognize Aj.
Construct N = (Q, %, 9, qo, F') to recognize Aj.

QO Q={q}U
@ ¢ is the new

start state.

Q@ F={@}UF

@ Forany g€ @ and any a € X,

d1(g,a)

d1(g; a)

6(¢;a) = § d1(g,a) U{ar}
{aa}

0

g€ Qi and g ¢ I
q€ Fyanda#¢
g€ Franda=c¢
gq=qand a=¢
q=qoand a # ¢

Ol

v
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e DFA

Formal Definitions of a DFA
Computation of a DFA

o From DFAs to languages

From languages to DFAs

The Regular Operations
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Conclusion

e DFA o NFA
e Formal Definitions of a DFA e Formal Definitions of an NFA
e Computation of a DFA e Equivalence of NFAs and
e From DFAs to languages DFAs
e From languages to DFAs o Closure Under the Regular
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