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Supplemental Material:
Long-Term Multi-Resource Fairness for
Pay-as-you Use Computing Systems
Shanjiang Tang, Zhaojie Niu, Bingsheng He, Bu-Sung Lee, Ce Yu

Abstract—Many current computing systems such as clouds and supercomputers charge users for their resource usages. A user’s
demand is often changing over time, indicating that it is difficult to keep the high resource utilization all the time for cost efficiency.
Resource sharing is a classical and effective approach for high resource utilization. In view of the heterogeneous resource demands
of users’ workloads, multi-resource allocation fairness is a must for resource sharing in such pay-as-you-use computing systems.
However, we find that, existing multi-resource fair policies such as Dominant Resource Fairness (DRF), implemented in currently
popular resource management systems such as Apache YARN [4] and Mesos [23], are not suitable for the pay-as-you-use computing
systems. We show that this is because of their memoryless characteristic that can cause the following problems in the pay-as-you-use
computing systems: 1). users can get resource benefits by cheating; 2). users might not be able to get the total amount of resources
that they are entitled to in terms of their resource contributions. In this paper, we propose a new policy called H-MRF, which generalizes
DRF and Asset Fairness with the long-term notion. We show that it can address these problems and is suitable for pay-as-you-use
computing systems. We have implemented it into YARN by developing a prototype called MRYARN. Finally, we evaluate H-MRF using
both testbed and simulated experiments. The experimental results show that there are about 1.1 ~ 1.5 sharing benefit degrees and

1.2x ~ 1.8x performance improvement for users with H-MRF, better than existing fair schedulers.

Keywords—Long-Term Multi-Resource Fairness, Cloud Computing, SuperComputing, YARN, MRYARN.

APPENDIX A
THE PROPERTIES ANALYSIS FOR LT-DRF

Theorem 1: LT-DREF is truthfulness.

Proof: LT-DRF targets at the fairness of accumulated
dominant resources. In LT-DRF, a user can yield her unused
resources when she does not need. Later when she has more
resource demands, LT-DRF will allow her to get an extra
amount of resources back from others that she yielded before.
It means that the underloaded users are fruly willing to
release unused resources. In contrast, for overloaded users,
it is possible for them to cheat the system at a moment in
order for obtaining more resources in preemption with others.
However, the result of cheating is indeed a pre-consumption
of their own resources and they need to refurn at a later time
to others. Cheating does not benefit users at all and hence
LT-DREF is truthfulness. O

Theorem 2: LT-DRF  violates the resource-as-you-
contributed fairness property.

Proof: Consider the previous two-user Example 4 of the
main file. After ¢,, there are totally 50(= 15 + 35) tasks
allocated for A (i.e., A’s total resource consumption is <50
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CPUs, 100 GB>) and 100(= 70 + 30) tasks allocated for
B (i.e., B’s total resource consumption is <100 CPUs, 100
GB>). For each of later successive time step t3, 14, ..., let us
assume that there are more than 25 tasks for A and 50 tasks
for B. With LT-DRE, there are exactly 25 tasks allocated for A
and 50 tasks allocated for B at each successive time step. Then
the total resource consumption will finally be < (50 + 25 x 7))
CPUs, (100450 x ) GB> for A, and < (100+50 x ) CPUs,
(100+50xn) GB> for B, where 7 denotes the number of time
steps after to. Therefore, the total resource consumption for
B is larger than A, violating the resource-as-you-contributed
fairness. O

APPENDIX B
THE PROPERTIES ANALYSIS FOR LT-AF

Theorem 3: LT-AF satisfies
fairness property.

Proof: For multi-resource allocation, there are two factors
affects resource-as-you-contributed fairness. One is the het-
erogeneous task requirements between users (e.g., <1 CPU,
2GB> for user A, <1 CPU, 1 GB> for user B in Figure 4
of the main file). Another is the varied workloads (i.e., the
number of tasks to run) across users at different time (i.e.,
unbalanced workload which can be either smaller or larger
than user’s current share). LT-AF overcomes the heterogeneous
task demand and varied workload problem by considering the
fairness on the basis of aggregate accumulated resource share.
It adjusts the current allocation dynamically to each user, to
make sure that the aggregate accumulated multiple resources
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are close to each other across users. Therefore, LT-AF meets
resource-as-you-contributed fairness property. O
Theorem 4: LT-AF violates sharing incentive property.

Proof: Recall in Section 3.3 of the main file, we show
that Asset Fairness is not sharing incentive by giving a
counterexample in Section 3.3 of the main file. If we assume
that at each time step of resource allocation, the number of
tasks pending to run for A is larger than 5 tasks and for B is
larger than 15 tasks, respectively. With LT-AF, the allocation in
each time will keep the same, i.e., allocating 5 tasks for A and
15 tasks for B, since the aggregate resource shares between
A and B are equal at each allocation snapshot. However, for
B, there are 20 tasks launched in the exclusively non-sharing
partition of <20 CPUs, 20 GB> at each time allocation, better
than that in the sharing case. Therefore, LT-AF is not sharing
incentive. O

APPENDIX C
THE PROPERTY ANALYSIS FOR H-MRF

Theorem 5: H-MREF satisfies sharing incentive property and
resource-as-you-contributed fairness.

Proof: Recall in H-MREF, it detects dynamically the
sharing degree [3; for each user. The resources are always first
allocated to users under sharing loss (i.e., 5; < 1) so that
all users eventually get sharing benefits in the sharing system
over non-sharing one. Thus, H-MRF is sharing incentive. In
addition, H-MRF will further try to minimize the difference of
aggregate accumulated resources for all users in the case that
no user is sharing loss. It implies that H-MRF meets resource-
as-you-contributed fairness. O

Theorem 6: (Truthfulness) A user cannot have more
amount of resources/tasks allocated in H-MRF by falsely
reporting her true demand.

Theorem 7: (Pareto efficiency) A user cannot increase her
resources/tasks allocation in H-MRF without decreasing other
users’ allocation when system resources are fully utilized.

Let’s prove Theorem 6 and Theorem 7 together as follows:

Proof: Let D;(t) and N,(t) be the resource demand
vector and the number of tasks allocated for user ¢ at time
t, respectively. Let a; ;, denote the task demand of resource k
for user 7. Then we have u; 1 (t) = N;(t) X a; ., where u; x(¢)
denotes the amount of resource & allocated for user ¢ with H-
MREF at time t. Moreover, the resource utilization of the system
is fully maximized (i.e., no more tasks can be allocated),
assuming there are an unbounded number of tasks at time
t. In that case, user ¢ must have one bottleneck resource k,
otherwise the system will not be fully utilized. Then we have
the resulting allocation for all users w.r.t resource k satisfying
lejsn/\j;&i uj(t) +upp(t) < < ZlngHAj;ﬁi wjk(t) +
u; 1 (t)+ai ., where ), denotes the system capacity of resource
k. We now come to prove Theorem 6 and Theorem 7 in the
following:

Proof of Theorem 6: Let’s start the proof by contradiction
to assume user ¢ can have more resources/tasks allocated by
using a resource demand vector D;(t), ie., D;-(t) # D;(t) =
N;(t) > Ni(t) < N;(t) = N;(t) + 1, where N, (t) denotes
the number of tasks allocated for user ¢ by using D;(t). Then

it holds that u; ,(t) = N;(t) x a;, > (Ni(t) + 1) x azx =
u; k() + a;  for every resource k, where u;’k(t) represents
the corresponding amount of resource k allocated for user @
using D; (t). Then the allocation for resource k in the system
will be Dy sy p i Wik (8) F25 1, (8) = 201 < mjs Wik () +
u; 1 (t) + a; k. > 7, being out of the system capacity and thus
it is a false allocation. In other words, the assumption is wrong
and thus H-MREF is truthfulness.

Proof of Theorem 7: Assume we can increase the number
of tasks from N;(t) to N, (t) (i.e., N, (t) = N;(t) + 1) without
decreasing other users’ allocation. Then it holds u;k(t) =
u; x(t) + aix, where u, ,(t) represents the corresponding
amount of resource k allocated for N; (t) tasks of user ¢. Given
N; (t) for user i, we then have a new resulting allocation
for resource k satisfying >, i, .5z Wik(t) + u;,k(t) >
Dii<jcnnjwei Wik(t) + ujk(t) + aik > 7, which contradicts
our hypothesis and thus our proof completes. O

APPENDIX D
H-MRF EXTENSION FOR DISTRIBUTED RE-
SOURCE ALLOCATION

In previous sections, we have implicitly assumed one ’super-
machine’ system containing all big resources. However, in
practice, it is more likely to have a cluster consisting of many
small distributed computing nodes. In the following, we turn
to see how H-MRF can be adapted to use in such distributed
scenario.

Consider a cluster consisting of K computing nodes. Let
RMW =< r%h),...,rﬁ,}f) > be the total resource capacity for
the h'" machine (ie, R = Y, _,_ R™), and 8" =<

(h) (R)

Si1 s Sim

> be the current resource share for user i
in the h'" machine (ie., Si = Y pcp SZ(-h)). Moreover,
let uyj) (t) denote the current allocated resource for user i
in the h'* machine with respect to resource type j (i.e.,
uij(t) = Yicnek uy;) (¢)). In such a distributed environment,
instead of separately performing resource allocation for each
machine, we use H-MRF to jointly consider the resource
allocation across all machines. The detailed process is as
follows. Moreover, let ﬂi(h) denote the local sharing degree for
user 7 in the A*"® machine (i.e., §; = Zlgth ,Bi(h)). For each
allocation in the h‘" machine, we first compute the global
sharing degree [(; for each user 7 according to Formula 2
and 3 of the main file as follows: 3; = mini<j<m Bi,;(t) =
S uiy (B dt fo Shcner uiry (D dt
§o min {dij (6),si5 (O}t {0 min {d; ;(1),s{") (1)} at”
take Algorithm 1 of H-MRF in the main file to perform the
resource allocation for the h*” machine. We particularly show
that it meets all desired properties listed in Section 2 of the
main file for distributed resource allocation. Moreover, let

Ni(h)(t) denote the number of tasks allocated for user ¢ in

the h'" machine (i.e., Ni(t) = X,k N ().

Theorem 8: In the distributed scenario, H-MRF satisfies
sharing incentive property and resource-as-you-contributed
fairness.

Proof: In the distributed scenario, H-MRF jointly per-
forms resource allocation across machines based on the global

Then we can
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sharing degree 3; for each user i. The sharing-loss users (i.e.,
B; < 1) are always given higher priorities than the sharing-
benefit users (i.e.,5; = 1) such that all users get sharing
benefits over the non-sharing case in the end. Therefore, H-
MREF satisfies sharing incentive property. Furthermore, H-
MRF minimizes the aggregate accumulated resource differ-
ence across all users given that all users are sharing-benefit.
It indicates that H-MREF satisfies resource-as-you-contributed
fairness. O

Theorem 9: H-MREF satisfies both truthfulness and pareto
efficiency properties in the distributed resource allocation.

Proof: Let Ni(h)(t) be the number of tasks allocated
for user ¢ in the h'™ machine at time ¢ (ie., N,(t) =
Sicner N () ). It then holds uy) (t) = N (t) x aju.
Moreover, each machine of the system is fully utilized (i.e., no
more tasks can be allocated), with the assumption that there are
an unbounded number of tasks at time ¢. Given that, there must
be one bottleneck resource k for each user ¢ for each machine,
otherwise it cannot be fully utilized for that machine. It then
holds for resource type & that 33, i, . i U; (h) () +u(h)( t) <

T < Y i U () + Ul () + @

1). Truthfulness Proof By contradiction, let’s assume that
user ¢ can allocate more resources/tasks by using a new
resource demand vector D; (1), i.e., D;(t) #D;(t) = N, (t) >
N;(t), where N;(t) denotes the number of tasks allocated for
user ¢ by using D;(t) There must be true for at least a machine
h that N;(h) (t) > Ni(h)(t) < N;(h)(t) > Ni(h) (t) + 1, where
N; (h) (t) denotes the number of tasks allocated for user i by
using D;(t) in the h'" machine. We then have u( )( t) =

NW ) x aip = (NP (1) +

every resource k, where u, (h )( t) represents the corresponding

1) X ajp = ugk)(t) + a;, for

amount of resource k allocated for user 7 using D; (t) in the A"
machine. It thereby holds for resource & in the A*" machine

that 33y s g () 05 (1) 2 s U0 (6) +

(h)( t) + aip > r,ih), exceeding the capacity of the A"
machine and hence the proposition is false. That is, H-MRF
is truthfulness in the distributed resource allocation.

2). Pareto Efficiency Proof: Let’s by contradiction suppose
that The number of tasks can be increased from N;(t) to
N;(t) (e, N,(t) = N;(t) + 1) without decreasing other
users’ allocation. It must hold for at least one machine h
that satisfies Ni(h) (t) = Ni(h) (t) + 1. Therefore we have
u;(Z)(t) > uz(};c) (t) + a;, where u;(Z)(t) denotes the cor-
responding amount of resource k for N, (h) (t) tasks of us-
er i. Therefore we have Zl<a<n”¢lu(h)(t) + u( IO
Di<j<nnjri ug k)(t) + u(h)( t)+a;k > r,(C ) being out of the
capacity of the h'" machme It means that the hypothesis is
wrong and therefore H-MREF is pareto efficiency. |

APPENDIX E
MONETARY COST EVALUATION
Recall in Section 3 of the main file that Amazon EC2 offers

three kinds of pricing schemes (e.g., on-demand, reserved
and spot instances) for users. Our MRYARN system supports

users to contribute their instances of either different or the
same pricing schemes to the resource pool and share together
with others. It then guarantees the resource-as-you-contribute
resource fairness across users. Particularly, when a user’s
tasks complete, she can leave the system at arbitrary time
by stopping her own instances and Amazon EC2 charges her
instances according to her selected pricing scheme and running
time.

Table 1 shows monetary cost results for four users under
different resource allocation policies and pricing schemes,
where the on-demand, reserved and observed spot prices for
m3.xlarge instances are $0.266/h, $0.190/h and $0.0508/h,
respectively. Moreover, the Amazon EC2 charges users on a
per-second basis for m3.xlarge instances. First, users under
static partitioning pay the most for instances compared with
other policies in the same pricing scheme. For example, there
can be as large as 125% monetary cost saving for H-MRF
compared to the static partitioning (non-sharing) case for User
1. This is because resource sharing can be better than static
partitioning in performance for users as illustrated in Figure 9
of the main file. Second, H-MRF outperforms other policies
in monetary cost savings under all pricing schemes for users,
since it achieves better performance than others as discussed
in Section 7.2.3 of the main file. Third, the difference of
monetary costs under different pricing schemes for a user is
significant. For example, there can be 40% cost saving for
reserved instances over on-demand instances for User 1 under
H-MREF. It indicates that choosing appropriate pricing scheme
and scheduling policy are crucial for monetary cost saving
maximization in the pay-as-you-use computing system.

[ On-demand | Reserved Instance | Spot Instance |

Static Partitioning 4.1895 2.9925 0.8001

DRF 2.128 1.52 0.4064

User 1 LT-DRF 2.5935 1.8525 0.4953

(Facebook) LT-AF 2.5935 1.8525 0.4953
H-MRF 1.862 1.33 0.3556

Static Partitioning 2.5935 1.8525 0.4953

DRF 1.3965 0.9975 0.2667

User 2 LT-DRF 1.729 1.235 0.3302

(Purdue) LT-AF 1.862 1.33 0.3556
H-MRF 1.197 0.855 0.2286

Static Partitioning 4.9875 3.5625 0.9525

DRF 4.655 3.325 0.889

User 3 LT-DRF 4.389 3.135 0.8382

(Spark) LT-AF 4.3225 3.0875 0.8255

H-MRF 3.591 2.565 0.6858

Static Partitioning 5.852 4.18 1.1176

DRF 4.655 3.325 0.889

User 4 LT-DRF 4921 3515 0.9398

(TPC-H) LT-AF 4.5885 3.27755 0.8763
H-MRF 3.5245 2.5175 0.6731

TABLE 1: The monetary cost for users under different allocation
policies and pricing schemes, where the on-demand, (1-year term) re-
served and spot prices for m3.xlarge instance are $0.266/h, $0.190/h
and $0.0508/h, respectively. Users pay for instances by per second.

APPENDIX F
GOOGLE TRACE DRIVEN SIMULATION RESULT-
S

In this section, we start to evaluate H-MRF at a larger scale by
using our built simulator to replay the execution of tasks from
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(b) Performance results for different fair sharing policies.

Fig. 1: Trace-driven simulation results for users submitting tasks in 24 hours to a shared Google cluster of 1000 machines.

a Google cluster with Google cluster-usage traces [8]. Figure 1
of the main file shows the distribution for tasks w.r.t different
resource demands. In the following, we simulate 100 users
submitting tasks with different resource demands for three
resource types (i.e., CPU, memory, and disk) in 24 hours to
a Google cluster of 1000 machines, consisting of 527.5 CPU
units, 513.2 memory units and 520.0 disk units in total, based
on the Google trace’s provided capacity information about
machines. We assume that users share the cluster with equal
share to each other.

Recall in Section 4 of the main file that for user i, it is
always true for sharing degree (;(t) = 1 in the non-shared
partitioned environment. Thus, to show how much better/worse
for all users in the shared system compared to the non-shared
partitioned environment, we introduce two concepts, namely,
total sharing benefit degree and total sharing loss degree for
all users, where total sharing benefit degree is defined as
S max{B;(t) — 1,0}, and the total sharing loss degree
is computed by Y. , min {3;(¢) — 1,0}. Figure 1(a) presents
the total sharing benefit/loss degrees for users under H-MRF
policy. In most scenarios, users are getting sharing benefits
under the shared Google cluster with H-MRF over a non-
shared partitioned cluster except the beginning computation.
Regarding some of the sharing loss at the beginning, it is due
to the unavoidable resource waiting problem for later arriving
users, referred to Section 7.2.2 of the main file for the detailed
analysis. Although this problem causes sharing loss for some
users, our H-MRF policy can address it via enabling those
users to have a higher priority in next time resource allocation
and makes all users get sharing benefits finally.

Figure 1(b) illustrates the speedup performance results for
different fair policies, where speedup is defined as the ratio
of execution time under the non-shared static partitioned
cluster to that of the shared cluster. For each error bar, it
illustrates the average, minimum and maximum performance
results for all users’ workloads under a fair policy. There are
about on average 1.5x ~ 1.7x performance improvement
for users’ workloads in the shared environment (e.g., DRF,
LT-DRF, LT-AF, H-MRF) compared to the exclusively non-

shared computation. Furthermore, H-MRF outperforms other
alternative policies in performance due to its efficient task
placement.

In summary, all of these observation results are consistent
with those in Section 7.2.2 and Section 7.2.3 of the main file.
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