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Supplemental Material:
EasyPDP: An Efficient Parallel Dynamic

Programming Runtime System for
Computational Biology

Shanjiang Tang, Ce Yu∗, Jizhou Sun, Bu-Sung Lee, Tao Zhang, Zhen Xu, Huabei Wu

Abstract—Dynamic programming is a popular and efficient technique in many scientific applications such as computational biology.
Nevertheless, its performance is limited due to the burgeoning volume of scientific data, and parallelism is necessary and crucial to
keep the computation time at acceptable levels. The intrinsically strong data dependency of dynamic programming makes it difficult
and error-prone for the programmer to write a correct and efficient parallel program. Therefore this paper builds a runtime system
named EasyPDP aiming at parallelizing dynamic programming algorithms on multi-core and multi-processor platforms. Under the
concept of software reusability and complexity reduction of parallel programming, a DAG Data Driven Model is proposed, which
supports those applications with a strong data interdependence relationship. Based on the model, EasyPDP runtime system is designed
and implemented. It automatically handles thread creation, dynamic data task allocation and scheduling, data partitioning, and fault
tolerance. Five frequently used DAG patterns from biological dynamic programming algorithms have been put into the DAG pattern
library of EasyPDP, so that the programmer can choose to use any of them according to his/her specific application. Besides, an
ideal computing distribution model is proposed to discuss the optimal values for the performance tuning arguments of EasyPDP. We
evaluate the performance potential and fault tolerance feature of EasyPDP in multi-core system. We also compare EasyPDP with
other methods such as Block-Cycle Wavefront(BCW). The experimental results illustrate that EasyPDP system is fine and provides an
efficient infrastructure for dynamic programming algorithms.

Index Terms—Dynamic Programming, EasyPDP, DAG Data Driven Model, fault tolerance, DAG pattern, multi-core, block-cycle.
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APPENDIX A
THE DP ALGORITHM AND CLASSIFICATION

DP is an important algorithm design technique in com-
putational biology. It solves the problem by decompos-
ing the problem into a set of interdependent subprob-
lems, and using their results to solve larger subproblems
until the entire problem is solved. In general, the solution
to a DP problem is expressed as a minimum(or max-
imum) of possible alternative solutions. Each of these
alternative solutions is constructed by composing one
or more solutions to subproblems. If r represents the
cost of a solution composed of subproblems x1,x2,...,xl,
then r can be written as r=g(f(x1),f(x2),...,f(xl)), where the
function g is called the composition function, and its
nature depends on the problem. If the optimal solution
to each problem is determined by composing optimal
solutions to the subproblems and selecting the mini-
mum(or maximum), the formulation is said to be a DP
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formulation[10].
Based on the dependencies between subproblems in

a DP formulation, there are various classification cri-
teria. Grama et al.[10] presents a classification of DP:
DP is considered as a multistage problem composed
of many subproblems. If the subproblems located on
all levels depend only on the results from the imme-
diately preceding levels, it is called serial; otherwise, it
is called nonserial. There is recursive equation called a
functional equation, which represents the solution to an
optimization problem. If a functional equation contains
a single recursive term, the DP is monadic; otherwise,
if it contains multiple recursive terms, it is polyadic.
Based on this classification criterion, four classes of DP
are defined: serial monadic, serial polyadic, nonserial
monadic, and nonserial polyadic. Considering the cache-
efficient parallel execution, Chowdhury et al.[11] provide
cache-efficient algorithms for three different classes of
DP: LDDP (Local Dependency DP) problem, GEP (Gaus-
sian Elimination Paradigm), and Parenthesis problem,
each of which embraces one class of DP applications[12].
We consider another classification method. That is, the
DP algorithms can be classified in terms of the matrix
dimension and the dependency relationship of each cell
on the matrix[30]: A DP algorithm is called a tD/eD
algorithm if its matrix dimension is t and each matrix
cell depends on O(ne) other cells. If a DP algorithm is a
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TABLE 1: Some Popular DP Algorithms for Computational Biology

Algorithm Application Reference
Smith-Waterman algorithm
with linear and affine gap
penalty

Genome local alignment [19]

Syntenic alignment Generalized genome global alignment [18]
Smith-Waterman algorithm
with general gap penalty

Genome local alignment [19][20]

Nussinov algorithm RNA base pair maximization [21]
Viterbi Algorithm Gene sequence alignment using HMMs, Multi-

ple sequence alignment
[22]

Double DP algorithm Protein threading [23]
Spliced Alignment Gene finding [24]
Zuker Algorithm RNA secondary structure prediction [25]
CYK Algorithm RNA secondary structure alignment [20]

tD/eD algorithm, it takes time O(nt+e) provided that the
computation of each term takes a constant duration of
time. For example, three DP algorithms are defined as
follows:

Algorithm 1. (2D/0D): Given F[i,0] and F[0,j] for

0≤ i,j≤n,

F [i, j] = min{F [i−1, j]+xi, F [i, j−1]+yj , F [i−1, j−1]+zij},
where xi,yj and zij are computed in constant time.

Algorithm 2. (2D/1D): Given c(i,j) for 1≤i<j≤n, F[i,i]

=0 for 1≤i≤n,

F [i, j] = c(i, j) +min{F [i, k − 1] + F [k, j]},
where 1<k≤j and c(i,j) is computed in constant time.

Algorithm 3. (2D/2D): Given c(i,j) for 1≤i<j≤2n, F[i,0]

and F[0,j] for 1≤i,j≤n,

F [i, j] = min{F [i
′
, j

′
] + c(i

′
+ j

′
, i+ j)},

where 0≤i′<i, 0≤j′<j and c(i,j) is computed in constant
time.
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Fig. 1: The computation dependency relationship and
distribution of load computation density along computa-
tion shift direction. (a) and (b) are 2D/0D DP algorithms,
while (c) is 2D/1D DP algorithm and (d) is 2D/2D DP
algorithm.

For a DP algorithm, if each matrix cell is computed
from the same number of other matrix cells, then the
DP is a regular one, otherwise, we call it irregular one.

There are many DP algorithms in computational bi-
ology. Some popular DP algorithms for computational
biology are shown in Table 1. DP is applied for sequence
comparison with numerous variations, determining the
intron/exon structure of genes and assembling DNA
sequences from overlapping fragments. As shown in
Figure 1, it is the computation dependency relationship
and distribution of load computation density along com-
putation shift direction for some popular algorithms. By
using increasingly blacking shades to indicate compu-
tational load density changes, we could notice that the
2D/0D DP algorithms are regular ones, while the 2D/iD
(i≥1) DP algorithms are irregular. We concentrate on
the parallelization of DP algorithms of the type 2D/iD
(i≥0), which are important DP algorithms for many
applications.
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Fig. 2: The computation dependency relationship for
some DP algorithms.
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APPENDIX B
EXAMPLE AND REUSABILITY

Figure 3 presents a sample source code for parallelism
of smith-waterman algorithm with linear and affine gap
penalty[19] with EasyPDP framework. User only needs
to do some initialization work and puts his/her attention
on a specific application, while the parallel part has
been implemented by EasyPDP. Specifically, user first
implements his/her DP application in an application-
specific function(defined by the user)(lines 2-37). Then
user selects a DAG Pattern from the DAG pattern li-
brary(lines 43-45) accordingly and does some required
argument settings (lines 46-57). After configurations,
s/he can call EasyPDP scheduler function to do par-
allel processing(lines 58-59). All parallel details such
as dynamic scheduling and distribution mechanisms,
which are application-independent and reusable, are
transparent to the user. From the user’s perspective, the
parallel programming based on EasyPDP is very similar
to ’serial’ programming. Moreover, if user wants now
to implement affine gap penalties (Gotoh82 algorithm),
s/he would only have to change the application-specific
function(smith_waterman_alignment in Figure 3).

APPENDIX C
PERFORMANCE EVALUATION

This section presents the performance evaluation results
for EasyPDP running on Dell PowerEdge 2950 Dual
Quad Core server with Xeon E5310 processors of 64K L1
cache and 4096K L2 cache. Four popular DP algorithms
taken from Table 1 are evaluated. Specifically, the Smith-
Waterman algorithm with linear and affine gap penalty
(SWLAG), and Syntenic alignment(SA) algorithm are
regular DP algorithms, whereas the Smith-Waterman
algorithm with general gap penalty (SWGG), and Viterbi
Algorithm(VA) are irregular DP algorithms. The com-
putation dependency relationships for SWLAG, SA, VA,
SWGG correspond to (a),(b),(d) of Figure 1, and (c) of
Figure 4 respectively. The vtune[32] profiler is used for
sampling the number of cache miss events occurred in
EasyPDP.

C.1 Dependency on Data Size
Figure 4 presents the experimental and calculated run
time results for EasyPDP as we increase the input data
size when the block size and the number of worker
threads are unchanged. Particularly, the calculated result
refers to the value of Formula (3) for the regular DP
alogrithm in Section 4.2.5. Moreover, the formula is
initialized based on the two random groups of exper-
imental results. There is a linear relationship between
the calculated run time and data size for the regular
DP algorithm according to the Formula (3). For (a)
and (b) of Figure 4, it is obvious that the experimental
result is much closer to the calculated result from the
Formula (3). In contrast, (c) and (d) of Figure 4 show

1: #include "EasyPDP_Scheduler.h"
2: /**
3: * The application-specific function.
4: * @param arg Pointer to data_blocks arg
5: */
6: void smith_waterman_alignment(void* arg) {

7: data_blocks* data_block = (data_blocks*)arg;
8: int data_row = data_block->data_row;L
9: int data_col = data_block->data_col;
10: int block_row = data_block->block_row;
11: int block_col = data_block->block_col;
12: int x = data_block->pos.x;
13: int y = data_block->pos.y;
14: int w;
15: for(int i=x; i<data_row&&i<x+block_row; i++){
16: for(int j=y; j<data_col&&j<y+block_col; j++){
17: M[i][j] = 0;
18: if(i==0 || j==0)
19: M[i][j] = 0;
20: if(i >0 && j > 0){
21: w = smith_waterman_getScore(seq1[i],seq2[j]);
22: if(M[i][j] < M[i-1][j-1] + w)
23: M[i][j] = M[i-1][j-1] + w;
24: }
25: if(i > 0){
26: w = smith_waterman_getScore(seq1[i],’-’);
27: if(M[i][j] < M[i-1][j] + w)
28: M[i][j] = M[i-1][j] + w;
29: }
30: if(j > 0){
31: w = smith_waterman_getScore(’-’,seq2[j]);
32: if(M[i][j] < M[i][j-1] + w)
33: M[i][j] = M[i][j-1] + w;
34: }
35: }
36: }
37:}

38:int main(int argc, char** argv) {
39: scheduler_args_t sched_args;
40: DAGPattern_args_t DAGPattern_arg;

41: //The initialization function.
42: smith_waterman_init();

43: //Select DAG Pattern.
44: DAGPattern_arg.DAG_pattern_id = Left_Upper_DAG;
45: sched_args.DAGPattern_arg = &DAGPattern_arg;

46: //Set thread_num to be the number of processors.
47: sched_args.thread_num= getNumberOfCpus();

48: sched_args.dp_data = (void*)M;
49: sched_args.data_col = sequence1.length + 1;
50: sched_args.data_row = sequence2.length + 1;
51: sched_args.block_col = sequence1.length > 500?

(sequence1.length+1)/10 : sequence1.length + 1;
52: sched_args.block_row = sequence2.length > 500?

(sequence2.length+1)/10 : sequence2.length + 1;
53: sched_args.timeout = 30;

54: //Set DP application-specific function.
55: sched_args.process=(void*)smith_waterman_alignment;

56: //Use default mapping function.
57: sched_args.DAG_pattern_node_data_mapping = NULL;

58: //Call EasyPDP scheduler for parallel processing.
59: EasyPDP_scheduler(&sched_args);

60: //Trace back results
61: smith_waterman_traceback();

62: return 0;
63:}

Fig. 3: The sample source code for smith-waterman
algorithm with linear and affine gap penalty.
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(a) SWLAG(BlockSize=50 × 50,ThreadNum=8)
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(b) SA(BlockSize=50 × 50,ThreadNum=8)
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(c) SWGG(BlockSize=50 × 50,ThreadNum=8)
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(d) VA(BlockSize=50 × 50,ThreadNum=8)

Fig. 4: The dependency on data size. Both the experimental and calculated run time results with different data sizes
are given for four DP algorithms. Specifically, Figure (a) and (b) are results for the regular DP algorithms, (c) and
(d) are results for the irregular DP algorithms.

that the experimental run time results for the irregu-
lar DP algorithms are much large and increase greatly
with increasing time intervals compared to the regu-
lar DP algorithms. Furthermore, the compared results
illustrated that the Formula (3) is no longer suitable for
the irregular DP algorithm. The reason is that, for the
irregular DP algorithm, the workload for each matrix
cell is undetermined and often increases greatly along
the anti-diagonal, and thereby the total computational
volume increases sharply as we enlarge the input data
size.

C.2 Dependency on Block Size
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Fig. 5: The EasyPDP run time results with different
block sizes. In Figure (a), the most suitable block size
is between 400 × 400 and 500 × 500. While in Figure
(b), the most suitable block size is between 8 × 8 and 20
× 20.

The BlockSize is a critical performance argument in DP
algorithm parallelization. Its setting is a tradeoff between
the load balancing and communication time. Both too big
and too small values of BlockSize will adversely affect the
program performance. And often the value of the most
suitable block size for regular DP algorithm is much
bigger than that of the irregular DP algorithm, due to
workload of the data blocks. In general, the practical
computation workload for a irregular data block is often
many times or more than that for a regular data block
with the same block size. The running time results for
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Ideal Speedup
SA (DataSize=10000,BlockSize=50)
SWLAG (DataSize=10000,BlockSize=50)
SWGG (DataSize=5000,BlockSize=50)
VA (DataSize=1000,BlockSize=50)
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Ideal Speedup for SEQ

SA (DataSize=10000 x 10000, BlockSize=50 x 50)

SWLAG (DataSize=10000 x 10000, BlockSize=50 x 50)

SWGG (DataSize=5000 x 5000, BlockSize=50 x 50)

VA (DataSize=1000 x 1000, BlockSize=50 x 50)

(b)

Fig. 6: The dependency on the number of threads. (a)
The speedups and comparisons against EasyPDP when
’the number of worker threads’ is set to be one for four
DP algorithms as we scale the number of worker threads.
(b) The comparisons against the sequential iterative code
as we scale the number of EasyPDP worker threads for
four DP algorithms.

various block sizes are illustrated in Figure 5. We can
observe that each of them has a most suitable block
size, and for regular SWLAG DP algorithm, its most
suitable block size is between 400 × 400 and 500 × 500,
whereas the most suitable block size for irregular SWGG
DP algorithm is between 8 × 8 and 20 × 20.

C.3 Dependency on Number of Threads

Figure 6(a) presents the speedups and comparisons
against EasyPDP when ’the number of worker threads’
is set to be one as we scale the number of worker threads
for four popular DP algorithms in the dual quad cores
system. It is obvious that all the speedup curves are
much close to the ideal speedup curve except their last
points for which the number of worker threads is 8. The
phenomenon illustrates that the EasyPDP has a good
scalability in its performance improvement. We know
that when the number of threads is equal to the number
of system cores, the speedup is often the best. Since our
EasyPDP is implemented as the master-slave model, the
number of application threads in fact should be 9 when
we set the number of worker threads to be 8, which just
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exceeds the number of processor cores by one.
Figure 6(b) gives out the comparisons between the

sequential iterative code and EasyPDP when we scale
the number of EasyPDP worker threads. We can note
that the curve of SWGG is above the ideal speedup line,
while the others are not. The reason is that the affection
of cache miss for the algorithm SWGG in EasyPDP is
non-negligible, while other algorithms are not(See detail
discussions about cache miss in APPENDIX C.4). By
comparing curves between (a) and (b) of Figure 6 for
algorithms SWLAG, SA, and VA, it is apparent that the
curves in (b) of Figure 6 are a bit further away from the
ideal speedup curve. This is due to the influence from the
EasyPDP overhead (See the discussion about EasyPDP
overhead in APPENDIX C.4).

C.4 EasyPDP Overhead and Cache Miss
If we view the sequential iterative code(SEQ for short)
as a non-overhead implementation for DP algorithms,
we could obtain the overhead of EasyPDP in multi-core
systems by comparing the run time against SEQ with
the number of worker threads to be one and the value
of block size to be that of input data size. As a generic
framework system, the overhead of EasyPDP mainly
attributes to those factors such as DAG operations, fault
tolerance mechanism, worker pool management, etc. As
shown in Figure 7, it is apparent that the overhead of
EasyPDP is minor(about 1% ∼ 4%) in contrast to SEQ
for four DP algorithms in multi-core systems.

As discussed in [11][12][13][14], cache-efficiency is
very crucial for DP algorithms running in CMP
systems[47]. The application of completely iterative DP
often results in inefficient cache usage. In [11][12], the
authors proposed a cache-efficient divide-and-conquer
algorithm which divides the DP problem into lots of
subproblems and solves them concurrently in one direc-
tion. In contrast, our EasyPDP automatically partitions
the DP into lots of blocks according to the argument
BlockSize set by the user, and solves each by working
threads iteratively. Therefore, BlockSize is a key argument
affecting the number of cache misses for EasyPDP. Here,
we design experiments by changing the value of Block-
Size while setting the number of threads to one for four
DP algorithms. The results are shown in Figure 8.

�� �� �� ��
��� ���

��� ���

Fig. 9: Cache miss analysis for four DP algorithms.

Indeed, the argument BlockSize has a few affection
to the reduction of the number of cache misses for
SWLAG, SA and VA algorithms. However, it dramati-
cally affects the number of cache misses to the irregular
SWGG algorithm. We take Figure 9 as an example to
analyze the cache miss. The computation dependency
relationships for SWLAG, SA, SWGG and VA algorithms
are respectively shown in Figure 1(a), Figure 1(a), Fig-
ure 2(c) and Figure 1(d). In Figure 9, for instance, we
compare two cases: BlockSize=2×2 vs BlockSize=DataSize.
For the regular algorithms SWLAG and SA, since each
computing cell only depends on its three adjacent cells,
there is little difference in the number of cache misses
between sweeping the elements completely row by row
when BlockSize=DataSize and computing block by block
when BlockSize=2×2. For the irregular algorithm SWGG,
since each computing cell depends on all of its upper and
left cells, the number of cache misses is quite different
for varied block sizes. We take block 2 (labeled in Figure
9) for instance. That computing row by row when Block-
Size=DataSize may make all the upper cell data needed
for computing the cell a1 be removed away from the
cache when computing cell a3, causing a cache miss in
such case. While that computing block by block when
BlockSize=2×2 could reuse all the upper cell data needed
for computing the cell a1 when computing cell a3, thus
no cache miss occurs in such case. Therefore, the smaller
suitable block size can be used to reduce the number
of cache misses in some cases, just as shown in Figure
8(c,g). For the irregular algorithm VA, since each cell
depends on all those completed cell, those data needed
for computing cell a1 could be reused in the computation
of a3 both when BlockSize=DataSize and when Block-
Size=2×2. It means there are few differences as to the
number of cache misses between sweeping the elements
completely row by row when BlockSize=DataSize and
computing elements block by block when BlockSize=2×2
for the algorithm VA.

However, Figures 8(e,f,h) illustrate that the value of
cache miss rate decreases as the value of argument
BlockSize increases. The EasyPDP overhead is a critical
issue here. Specifically, the smaller division of data block
would incur a larger DAG size needed in EasyPDP(more
overhead), which in turn brings about more number of
cache misses when operating the DAG. Therefore, the
big value of argument BlockSize is a key way in reducing
the number of cache misses incurred by its overhead.

In conclusion, for the algorithms SWLAG, SA, VA, the
block size has a few contribution to the number of cache
misses from the feature of the algorithm itself, while
the overhead incurred by the argument BlockSize is a
key contributor in affecting the cache miss of EasyPDP.
Thus, the cache miss rate decreases as the value of
argument BlockSize increases for these algorithms. In
contrast, the character of SWGG algorithm is a dominate
factor which dramatically affects the number of cache
misses in comparison to its overhead. Therefore, the
smaller block size reduces the cache miss rate for the
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Fig. 7: The EasyPDP overhead for regular and irregular DP algorithms. By setting ThreadNum=1 and Block-
Size=DataSize, we compare the run time of EasyPDP to that of the sequential iterative code with various input
data sizes for four DP algorithms, aiming to see the overhead of EasyPDP system in the multi-core environment.
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(e) SWLAG(ThreadNum=1,DataSize=10000×10000)
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(f) SA(ThreadNum=1,DataSize=16000 × 16000)
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(g) SWGG(ThreadNum=1,DataSize=3000 × 3000)
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(h) VA(ThreadNum=1,DataSize=800 × 800)

Fig. 8: The EasyPDP cache miss for regular and irregular DP algorithms. Figures from (a) to (d), through the changes
of BlockSize when ThreadNum=1, are aimed to see the affection of cache miss in EasyPDP for regular and irregular
DP algorithms. Figures from (e) to (h) are the rate of cache miss results sampled with profiler vtune for L1 and L2
caches.

algorithm SWGG.

C.5 Comparison to BCW
In contrast with dynamic runtime system EasyPDP,
the Column based Wavefront(CW)[10] and Block-Cycle
based Wavefront(BCW)[9] are static data partitioning
methods to parallelize DP algorithm. The CW algo-
rithm can be viewed as a special BCW algorithm when
setting the argument block col to the result of data col
divided by thread num for BCW. Thereby it only needs
to compare the performance with BCW for EasyPDP.
To the BCW algorithm implementation, we also adopt
the DAG Data Driven Model, but the static worker pool
is considered here. In order to compare the EasyPDP
with BCW thoroughly and completely, we define the
metric BCW/EasyPDP rate as BCW divided by EasyPDP
with their run times in the same condition, and do

comparisons from three perspectives: data size, block
size and the number of threads respectively.

Figure 10 presents the comparison between the rate
results of EasyPDP and BCW. The baseline 1.00 LINE is
given. It indicates EasyPDP is better if the rate points
are above the baseline, otherwise it is BCW. A conclu-
sion drawn from the diagram is that EasyPDP is more
efficient than BCW both for regular and irregular DP
algorithms, as it can be observed that the experimental
rate curves for both regular and irregular DP algorithms
are all above the 1.00 LINE. The primary reason is
that, for the DP algorithms, its data dependency is
extremely strong, which means that only a few DAG
block nodes are computable at the beginning, and more
and more new computable nodes are spawn during the
running process. Compared with EasyPDP, the BCW,
which uses the static data allocation and scheduling
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Fig. 10: The compared BCW/EasyPDP rate results from three different aspects: data size, block size and the number
of threads, as shown in Figures (a),(b),(c) respectively. The EasyPDP is more efficient than BCW when the point is
above the baseline 1.00 LINE, otherwise the BCW is more efficient.

method, has a fatal situation case during the runtime
that there are some computable DAG nodes as well as
some idle threads simultaneously, whereas the case will
never occur for EasyPDP, which uses a dynamic data
allocation and scheduling runtime system. Moreover, for
the BCW, the case often occurs many times and even
more, especially for irregular DP algorithms.

C.6 Fault Recovery
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Fig. 11: Normalized execution time in the presence of
different number of faults for EasyPDP.

Figure 11 presents results for fault injection experi-
ments for EasyPDP. The graphs represent normalized
execution time. An error may occur at an arbitrary point
within the program execution, which may affect the
execution and buffers, but does not corrupt the runtime
or its data structures. The EasyPDP runtime detects
faults through timeouts and recovers to complete the
execution correctly. The whole process of fault tolerance
and recovery is completely transparent to the program-
mer. The initial value for the argument timeout is set
by the user and dynamically changed at runtime. Its
value can greatly affect the system performance (See

discussion in Section 4.2.4). Here the timeout value is
initialized to 10 seconds. Note that fault impacts for
the regular DP algorithms (SWLAG and SA) are more
prominent than the irregular DP algorithms(SWGG and
VA), due to the fact that the execution times for the
irregular DP algorithms are far greater than the regular
ones for the same data size. Here the timeout value of
10 is suitable for the irregular DP algorithms, while it is
relatively too large compared with the execution times
of the regular DP algorithms and hence impacts the
performance greatly.

APPENDIX D
PROOF OF THEOREM 1
Theorem 1. When t = t0(t0 ≥ 1), the optimal value of b for
the minimal value S is

b =

⎧⎪⎨
⎪⎩

d (t0 = 1)

√
c0×d

k×t0×(t0−1) (t0 > 1)
(1)

Therefore, the optimal minimal value S is

S =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d× k + c0 (t0 = 1)

√
t0×(t0−1)×c0×d×k+d×k×√

t0
t0

+

c0 × (t0 − 1)+√
c0 × d× k × (t0 − 1) (t0 > 1)

(2)

Proof. When t = t0(t0 ≥ 1), the value of S is

S = (b× k + c0)× (t0 − 1 +
d

b× t0
) (3)

∴ ∂S

∂b
= k × (t0 − 1 +

d

b× t0
) + (b× k + c0)× (− d

b2 × t0
)

= k × (t0 − 1)− c0 × d

b2 × t0
(4)

(i). In the case when t0 = 1, we have
∂S

∂b
= −c0 × d

b2
< 0 (5)
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Hence, it means that ∂S
∂b is a monotonic de-

creasing function, thereby we have the optimal
minimal value S when b = d. In this case, the
optimal minimal value S is:

S = d× k + c0 (6)

(ii). In the case when t0 > 1, we can make ∂S
∂b = 0,

then it has

b =

√
c0 × d

k × t0 × (t0 − 1)
(7)

In this case, the optimal minimal value S is:

S =

√
t0 × (t0 − 1)× c0 × d× k + d× k ×√t0

t0
+

c0 × (t0 − 1) +
√
c0 × d× k × (t0 − 1). (8)

(iii). In terms of (i) and (ii), we therefore obtain

b =

⎧⎪⎨
⎪⎩

d (t0 = 1)

√
c0×d

k×t0×(t0−1) (t0 > 1)

S =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d× k + c0 (t0 = 1)

√
t0×(t0−1)×c0×d×k+d×k×√

t0
t0

+

c0 × (t0 − 1) +
√
c0 × d× k × (t0 − 1) (t0 > 1)

APPENDIX E
PROOF OF THEOREM 2
Theorem 2. When b = b0(0 < b0 ≤ d), the optimal value of
t for the minimal value S is

t =

√
d

b0
(0 < b0 ≤ d) (9)

in this case, the optimal minimal value S is

S = (b0 × k + c0)× (2×
√

d

b0
− 1) (0 < b0 ≤ d) (10)

Proof. When b = b0(0 < b0 ≤ d), the value of S is

S = (b0 × k + c0)× (t− 1 +
d

b0 × t
) (11)

∴ ∂S

∂t
= (b0 × k + c0)× (1− d

b0 × t2
) (12)

Let ∂S
∂t = 0, we can get

t =

√
d

b0
(13)

In this case, the optimal minimal value S is

S = (b0×k+c0)×(2×
√

d

b0
−1) (0 < b0 ≤ d) (14)

APPENDIX F
PROOF OF THEOREM 3
Theorem 3. The optimal value of timeout r for the DP
algorithm is

r =

⎧⎪⎪⎨
⎪⎪⎩

(�
√

d
b−t

t �+ 1)× (b× k + c0) + ε (t <
√

d
b , 0 < b ≤ d)

(b× k + c0) + ε (t ≥
√

d
b , 0 < b ≤ d)

(15)

where ε(ε > 0) represents a small extra necessary delayed
time for the fault tolerance and recovery mechanism.

Proof. In the EasyPDP, the cost of a DAG node task consists
of two parts: computation cost (Cij for short) and
waiting cost (Wij for short) in pool queue.
(i). The optimal value of timeout should equal to the

maximum cost of all DAG node tasks by adding a
small extra necessary delayed time ( ε for short, (ε >
0)) for the fault tolerance and recovery mechanism.
That is,

r = max
0≤i,j<

√
d
b

{Cij +Wij + ε}. (16)

Next, we first prove the optimal value of

r = max
0≤i,j<

√
d
b

{Cij +Wij} (17)

from the ideal theoretic aspect without consid-
ering the necessary delayed time for the fault
tolerance and recovery mechanism.

(1). r ≮ max
0≤i,j<

√
d
b

{Cij +Wij}. (18)
Prove: If r is less than the maximum cost
of all DAG node tasks, the fault tolerance
and recovery mechanism will then wrongly
kill some being computed node tasks such as
the node task of the maximum cost, makes
that task recomputed and affects the system
performance. So r can’t be less than the max-
imum cost of all DAG node tasks.

(2). It will make the fault tolerance and recovery mech-
anism obtuse when r > max

0≤i,j<
√

d
b

{Cij +

Wij}. (19)
Prove: If r is larger than the maximum cost
of all DAG node tasks, it means that the fault
tolerance and recovery mechanism will ob-
tusely waste at least (r−max

0≤i,j<
√

d
b

{Cij +

Wij}) time to detect faults when a fault oc-
curred in a random DAG node task. In this
case, the system performance will be affected,
too.

(3). In terms of (1) and (2) above, we could obtain
from the ideal theoretic aspect that

r = max
0≤i,j<

√
d
b

{Cij +Wij}.
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However, we should consider a small extra
necessary delayed time for the fault tolerance
and recovery mechanism from the implemen-
tation aspect in order to guarantee correct
fault detection.

∴ r = max
0≤i,j<

√
d
b

{Cij +Wij + ε}.

(ii). When t <
√

d
b , the optimal value of r = (�

√
d
b−t

t �+
1)× (b× k + c0) + ε. (20)

(1). For the case when t <
√

d
b , there are at most√

d
b computable DAG nodes at any time.

Prove: Let’s consider the dependence rela-
tionship among DAG nodes. There is at most
one computable DAG node in a row or col-
umn of the DAG at any time. As each DAG
node depends on its upper and left adjacent
nodes, it will violate the dependence relation-
ship if there are more than one computable
DAG nodes in a row or column of DAG
at the same time. Therefore, the maximum
number of computable DAG nodes at any
time should equal to the number of rows
or columns of DAG. That is, there are at
most

√
d
b computable DAG nodes at any time

when t <
√

d
b .

(2). Consider the case when there are
√

d
b com-

putable node tasks, where the average com-
putation cost for each node task is C =
(b × k + c0). Since there are t threads, there-
fore there are t tasks being completed and

(
√

d
b − t) tasks remained in the pool queue.

For that remained node tasks, it needs to
wait at most �

√
d
b−t

t � number of DAG node
computing time in the pool queue before
being computed if we assume that each time
there are t tasks completed. Let’s assume f :
f(i, j) = 1 when node (i, j) is the remained
node task; otherwise, f(i, j) = 0. Moreover,
for the remained nodes, g(i, j) denotes the
number of DAG nodes including node (i, j)
itself queued in the buffer when node (i, j) is
distributed to the pool queue. Therefore,

Wij =

⎧⎨
⎩

0 f(i, j) = 0

� g(i,j)t � × C f(i, j) = 1

, (21)

(0 ≤ i, j <
√

d
b , 1 ≤ g(i, j) ≤

√
d
b − t)

∴ max
0≤i,j<

√
d
b

{Cij +Wij} = �
√

d
b − t

t
� × C + C

= (�
√

d
b−t

t �+ 1)× (b× k+ c0).

∴ r = max
0≤i,j<

√
d
b

{Cij +Wij + ε}

= (�
√

d
b − t

t
�+ 1)× (b× k + c0) + ε.

(iii). When t ≥
√

d
b , the optimal value of r = (b × k +

c0) + ε. (22)
Prove: When t ≥

√
d
b and average computation

cost for each node task is C = (b×k+ c0), there
are at most t computable DAG nodes along the
anti-diagonal at any time. It implies that no
node tasks need to be waited in the pool queue
before other node tasks completed in this case.
Therefore, we have f(i, j) = 0,Wij = 0(0 ≤
i, j <

√
d
b ) for all nodes.

∴ max
0≤i,j<

√
d
b

{Cij +Wij} = C + 0 = (b× k + c0).

(23)

∴ r = max
0≤i,j<

√
d
b

{Cij +Wij + ε} = (b×k+ c0) + ε.

(24)

(iiii). In terms of (ii) and (iii), we could obtain

r =

⎧⎪⎪⎨
⎪⎪⎩

(�
√

d
b−t

t �+ 1)× (b× k + c0) + ε (t <
√

d
b )

(b× k + c0) + ε (t ≥
√

d
b )
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