
IEEE TRANSACTIONS ON CLOUD COMPUTING 1

Supplemental Material:
DynamicMR: A Dynamic Slot Allocation Optimization

Framework for MapReduce Clusters
Shanjiang Tang, Bu-Sung Lee, Bingsheng He

Abstract—MapReduce is a popular computing paradigm for large-scale data processing in cloud computing. However, the slot-based
MapReduce system (e.g., Hadoop MRv1) can suffer from poor performance due to its unoptimized resource allocation. To address it,
this paper identifies and optimizes the resource allocation from three key aspects. First, due to the pre-configuration of distinct map
slots and reduce slots which are not fungible, slots can be severely under-utilized. Because map slots might be fully utilized while
reduce slots are empty, and vice-versa. We proposes an alternative technique called Dynamic Hadoop Slot Allocation by keeping the
slot-based model. It relaxes the slot allocation constraint to allow slots to be reallocated to either map or reduce tasks depending on their
needs. Second, the speculative execution can tackle the straggler problem, which has shown to improve the performance for a single
job but at the expense of the cluster efficiency. In view of this, we propose Speculative Execution Performance Balancing to balance the
performance tradeoff between a single job and a batch of jobs. Third, delay scheduling has shown to improve the data locality but at the
cost of fairness. Alternatively, we propose a technique called Slot PreScheduling that can improve the data locality but with no impact
on fairness. Finally, by combining these techniques together, we form a step-by-step slot allocation system called DynamicMR that can
improve the performance of MapReduce workloads substantially. The experimental results show that our DynamicMR can improve the
performance of Hadoop MRv1 significantly while maintaining the fairness, by up to 46% � 115% for single jobs and 49% � 112%

for multiple jobs. Moreover, we make a comparison with YARN experimentally, showing that DynamicMR outperforms YARN by about
2% � 9% for multiple jobs due to its ratio control mechanism of running map/reduce tasks.

Keywords—MapReduce, Hadoop Fair Scheduler, Slot PreScheduling, Delay Scheduler, DynamicMR, Slot Allocation.

�

APPENDIX A
DESIGN AND IMPLEMENTATION OF SLOT
PRESCHEDULING

Fig. 1: The overview design and implementation of Slot PreSchedul-
ing and its combination with PD-DHSA. The labels (1)-(4), (P1)-(P3)
in the graph corresponds to Case (1)-(4) in Section 2.1.2 of the main
file and Case (P1)-(P3) in Section A, respectively.

Figure 1 gives an overview design and implementation of

� S.J. Tang, B.S. Lee, B.S. He are with the School of Computer Engineering,
Nanyang Technological University, Singapore.
E-mail: {stang5, ebslee, bshe}@ntu.edu.sg.

Slot PreScheduling and its incorporation with PD-DHSA. It is

an extended graph on top of Figure 4 of the main file. Given

a tasktracker tts connecting to the jobTracker in a heartbeat,

the overall execution flow is as follows:

Case (P1): The slot allocation work starts from Case (1)

of PD-DHSA. When the attempt of Case (1) fails, instead of

going forwards to Case (2) as in Figure 4 of the main file, it

comes to Case (P1) of Slot PreScheduling. It checks whether

the condition of the first case in Section 2.3.2 of the main file

holds. If yes, the Slot PreScheduling will perform the map task

assignment for the current job. Otherwise, it checks whether

the condition of the second case in Section 2.3.2 of the main

file holds or not, by moving towards to Case (P2).

Case (P2): It checks whether there are idle reduce slots

and pending map tasks for the current job with data on

tts. If the condition holds, it attempts to perform map task

assignment work on tts by borrowing idle reduce slots. More-

over, there is a variable borrowedReduceSlots, which counts

the current number of reduce slots that has been borrowed

by Slot PreScheduling. To limit the maximum number of

idle reduce slots that can be borrowed by Slot PreSchedul-

ing, we provides user with a configurable threshold variable

maximumBorrowableReduceSlots, initialized to be infinity by

default. The Slot PreScheduling can proactively perform map

task assignment if and only if borrowedReduceSlots does not

exceed maximumBorrowableReduceSlots. Otherwise, the Slot

PreScheduling will deliver the task assignment work to PD-

DHSA (i.e., Case (2)).

Case (P3): When the condition for Case (2) of PD-DHSA

tashj
Text Box
This is a pre-print of IEEE TCC 2014.



IEEE TRANSACTIONS ON CLOUD COMPUTING 2

does not hold, Slot PreScheduling will begin to work by check-

ing whether it is possible to assign pending reduce tasks with

idle map slots in case that the variable borrowedReduceSlots
is larger than zero. If yes, Slot PreScheduling will perform

reduce task assignment with idle map slots.

APPENDIX B
DYNAMICMR IMPLEMENTATION

We implement DynamicMR based on HFS source code.

Table 1 lists some key functions for DynamicMR. We have a

taskScheduler class DynamicMRFairScheduler, acting as the

core role for task scheduling. For the DHSA component, it

provides two functions assignTasks poolInDependentMode()
and assignTasks poolDependentMode() implemented

for PI-DHSA and PD-DHSA, respectively. Moreover,

there are two functions prescheduler mapTask() and

prescheduler reduceTask() for map tasks and reduce tasks

preScheduling, respectively. For SEPB, we implement it in

PoolSchedulable class. DyamicSpeculativeTaskScheduler()
dynamically determines when to schedule speculative tasks

for utilization efficiency optimization.

As mentioned at the beginning of Section 2 of the

main file before, the three components, DHSA, SEPB,

Slot PreScheduling are loosely coupled. They can work

alone or together. To achieve that, we provide users

with some configurable arguments as shown in Table 2.

For DHSA, users can choose the types (e.g., PI-DHSA,

PD-DHSA) they want to use. Meanwhile, users can

specify the maximum number of idle map (reduce)

slots (e.g., mapred.idle.mapslots.borrowedforReduceTasks,

mapred.idle.reduceslots.borrowedforMapTasks) that can

be borrowed for reduce (map) tasks at a moment.

The DHSA can be disabled by simply setting them to

zero. For SEPB, we provide users with two alternative

modes (i.e., cluster-level and pool-level), specified by

FairSchedulerSpeculativeJobsPendingTasksCheckedMode.

Instead of checking all pending tasks for all jobs, we

allow users flexibly to specify how many percentage

of runnable jobs they want to check for pending tasks

before allowing to schedule speculative tasks (e.g.,

poolPercentageOfSubmittedJobsCheckedForPendingTasks and

poolPercentageOfSubmittedJobsCheckedForPendingTasks).

It can be disabled by configuring them with zero. Finally,

for Slot PreScheduling, users can enable it by setting

mapred.map.tasks.preScheduler.enabled to be true. We also al-

low users to specify the maximum number of reduce slots (e.g.,

mapred.preScheduler.maximumNumBorrowedReduceSlots)

that can be preempted by map tasks for data locality

improvement.

APPENDIX C
DISCUSSION ON DHSA
DHSA VS Static Slot Optimization. Traditional Hadoop

MRv1 adopts the static slot configuration method for map

and reduce tasks and has a strict constrain that map tasks

can only use map slots and reduce tasks can only run on

Algorithm 1 The dynamic task assignment policy for tasktracker
under PI-DHSA.
When a heartbeat is received from a compute node n:

1: compute its clusterUsedMapSlots, clusterUsedReduceSlots, mapSlotsDe-
mand, reduceSlotsDemand, mapSlotsLoadFactor and reduceSlotsLoad-
Factor.

2: /*Case 1: both map slots and reduce slots are sufficient.*/
3: if (mapSlotsLoadFactor � 1 and reduceSlotsLoadFactor � 1) then
4: //No borrow operation is needed.
5: end if
6: /*Case 2: both map slots and reduce slots are not enough.*/
7: if (mapSlotsLoadFactor � 1 and reduceSlotsLoadFactor � 1) then
8: //No borrow operation is needed.
9: end if

10: /*Case 3: map slots are enough, while reduce slots are insufficient. It
calculates borrowed map slots for reduce tasks.*/

11: if (mapSlotsLoadFactor � 1 and reduceSlotsLoadFactor � 1) then
12: currentBorrowedMapSlots = clusterUsedMapSlots - clusterRun-

ningMapTasks;
13: extraReduceSlotsDemand = min{ max{ floor{ clusterMapCapacity

* percentageOfBorrowedMapSlots} - currentBorrowedMapSlots, 0}, re-
duceSlotsDemand - clusterReduceCapacity}

14: updatedMapSlotsLoadFactor = (mapSlotsDemand + extraReduceS-
lotsDemand) / clusterMapCapacity;

15: end if
16: /*Case 4: map slots are insufficient, while reduce slots are enough. It

calculates borrowed reduce slots for map tasks.*/
17: if (mapSlotsLoadFactor � 1 and reduceSlotsLoadFactor � 1) then
18: currentBorrowedReduceSlots = clusterUsedReduceSlots - clusterRun-

ningReduceTasks;
19: extraMapSlotsDemand = min{ max{ floor{ clusterReduceCapacity *

percentageOfBorrowedReduceSlots} - currentBorrowedReduceSlots, 0},
mapSlotsDemand - clusterMapCapacity}

20: updatedReduceSlotsLoadFactor = (reduceSlotsDemand + extraMap-
SlotsDemand) / clusterReduceCapacity;

21: end if
22: compute availableMapSlots and availableReduceSlots based on the up-

dated map/reduce load factor and used slots.

reduce slots, making the performance sensitive to the slot

configurations, i.e., different slot configurations will results

in varied performance, as illustrated in Figure 2. Moreover,

for FIFO scheduling, different job submission orders also

have varied performance [24]. In contrast, for Fair scheduling,

different weights (i.e., shares) of pools can cause varied per-

formance for the whole jobs. It implies that, we can improve

the performance for Hadoop MRv1 statically via optimizing

slot configuration, job submission orders, and pool weights.

Compared to DHSA, such static methods have the following

serious shortcomings:

First, the static optimization methods need to know some

information about MapReduce workloads (e.g., the number

of map/reduce tasks per job/pool, the execution time for

map/reduce tasks per job) in advance, which is however

often un-obtainable without running tasks in practice. Instead,

it can only be used for periodically running jobs (e.g., in

data warehouse). Thus, there is a generality problem for

static methods. In contrast, DHSA improves the performance

without needs of any information about MapReduce jobs in

advance and thus keeps the generality feature of Hadoop.

Second, the static optimization methods can improve the

performance of MapReduce jobs but substantially not enough.

Consider the static slot configuration for example, no matter

how to optimize the slot configuration per slave node, it still

cannot avoid the case that there are pending tasks and idle slots

(e.g., for a single job case, the map slots will be idle in the



IEEE TRANSACTIONS ON CLOUD COMPUTING 3

(a) Sort (b) WordCount (c) Grep

(d) InvertedIndex (e) Classfication (f) HistogramMovies

(g) HistogramRatings (h) SequenceCount (i) SelfJoin

Fig. 2: The performance improvement by DHSA under various slot configuration for MapReduce workloads.

TABLE 1: The key functions in the DynamicMR.

Class Function Description

DynamicMRFairScheduler

List<Task> assignTasks_poolInDependentMode()
Assign map/reduce tasks across pools dynamically with PI-DHSA. See Algorithm 1 in the main file for details.

List<Task> assignTasks_poolDependentMode()
Assign map/reduce tasks across pools dynamically with PD-DHSA. See Algorithm 2 in the main file for details.

ArrayList<Task> prescheduler_mapTask()
Preschedule local map tasks using idle map and reduce slots, for Case P1 and P2 at Design and Implementation in Section A.

ArrayList<Task> prescheduler_reduceTask()
Preschedule reduce tasks using map slots for Case P3 illustrated in Figure 1 in Section A.

PoolSchedulable
Task task DyamicSpeculativeTaskScheduler()

Schedule speculative tasks dynamically for utilization efficiency. See detailed implementation in Section A.



IEEE TRANSACTIONS ON CLOUD COMPUTING 4

TABLE 2: The user configurable arguments for DynamicMR.
Types Argument Location

DHSA

mapred.idle.mapslots.borrowedforReduceTasks

mapred-site.xml
Fraction of the number of unused map slots (0.0 � 1.0) that can be used for reduce tasks, when map slots is not enough.

mapred.idle.reduceslots.borrowedforMapTasks
Fraction of the number of unused reduce slots (0.0 � 1.0) that can be used for map tasks, when reduce slots is not

enough.
PoolsFairShareSlotsAdaptiveMode

fair-scheduler.xml
The choice of DHSA. For PI-DHSA, set it to PoolInDependent; and otherwise configure it with PoolDependent for

PD-DHSA.

SEPB

mapred.submitted.jobs.checkedforPendingTasks
mapred-site.xmlFraction of the total number of jobs (0.0 � 1.0) to be checked for the number of pending map (reduce) tasks at

cluster-level, needed by DynamicMR to decide whether it is time to run the speculative task or not for a batch of jobs.
poolPercentageOfSubmittedJobsCheckedForPendingTasks

fair-scheduler.xml

Fraction of the total number of jobs within a pool (0.0 � 1.0) to be checked for the number of pending map (or reduce)
tasks, needed by DynamicMR to decide whether it is time or not to run the speculative task for a batch of jobs from a pool.
FairSchedulerSpeculativeJobsPendingTasksCheckedMode

Set it to be GlobalLevel when we check pending tasks for all jobs in a cluster. Otherwise, set it to be PoolLevel if we
want to check pending tasks for all jobs within each pool.

Slot
mapred.map.tasks.preScheduler.enabled

mapred-site.xml
If true, it preSchedules local map tasks on the node when there are no allowable map slots.

PreScheduling mapred.preScheduler.maximumNumBorrowedReduceSlots
The maximum number of reduce slots that can be borrowed for map tasks with preScheduler, 100000 by default.

(a) Sort (b) WordCount (c) Grep

(d) InvertedIndex (e) Classfication (f) HistogramMovies

(g) HistogramRatings (h) SequenceCount (i) SelfJoin

Fig. 3: The data locality improvement for Slot PreScheduling.



IEEE TRANSACTIONS ON CLOUD COMPUTING 5

Job ID Name Job ID Name Job ID Name

J1 WordCount J11 WordCount J21 Classification
J2 Sort J12 InvertedIndex J22 SelfJoin
J3 Grep J13 SequenceCount J23 Grep
J4 InvertedIndex J14 SelfJoin J24 InvertedIndex
J5 Classification J15 HistogramMovies J25 SequenceCount
J6 HistogramMovies J16 Sort J26 Sort
J7 HistogramRatings J17 HistogramRatings J27 WordCount
J8 SequenceCount J18 Grep J28 HistogramRatings
J9 SelfJoin J19 InvertedIndex J29 Classification
J10 Classification J20 HistogramRatings J30 SequenceCount

TABLE 3: The batch jobs information. The detailed information for each job is given by Table 3 of the main file. Our experiments consider
four workloads: 5 jobs (J1 � J5), 10 jobs (J1 � J10), 20 jobs (J1 � J20), 30 jobs (J1 � J30).

Algorithm 2 The dynamic task assignment policy for tasktracker
under PD-DHSA.
When a heartbeat is received from tasktracker tts:

1: Compute its totalSlotsDemand, totalSlotsCapacity, trackerSlotsCapacity,
trackerRunningTasksNum and trackerCurrentSlotsCapacity.

2: /* Return when there are no idle slots. */
3: if trackerRunningTasksNum � trackerCurrentSlotsCapacity then
4: return NULL;
5: end if
6: for (i = 0; i � trackerCurrentSlotsCapacity - trackerRunningTasksNum;

i++) do
7: Sort pools by distance below min and fair share
8: for (Pool p : pools) do
9: /* Case (1): allocate map slots for map tasks from Pool p*/

10: if (there are pending map tasks and idle map slots) then
11: attempt to allocate map slots for map tasks (considering data

locality) and jump out of loop if allocation succeeded.
12: end if
13: /* Case (2): allocate reduce slots for reduce tasks from Pool p*/
14: if (Case (1) failed and there are pending reduce tasks and idle

reduce slots) then
15: attempt to allocate reduce slots for reduce tasks and jump out

of loop if allocation succeeded.
16: end if
17: /* Case (3): allocate reduce slots for map tasks from Pool p*/
18: if (Case (2) failed and there are pending map tasks) then
19: attempt to allocate reduce slots for map tasks (considering data

locality) and jump out of loop if allocation succeeded.
20: end if
21: /* Case (4): allocate map slots for reduce tasks from Pool p*/
22: if (Case (3) failed and there are pending reduce tasks) then
23: attempt to allocate map slots for reduce tasks and jump out of

loop if allocation succeeded.
24: end if
25: end for
26: /* Case (5): schedule the non-local map tasks when its node-local

tasks cannot be satisfied. */
27: if (Case (1)-(4) failed) then
28: for (Pool p : pools) do
29: if (there are pending map tasks) then
30: attempt to allocate map/reduce slots to map tasks (not

considering data locality) and jump out of loop if allocation succeeded.
31: end if
32: end for
33: end if
34: end for

reduce-phase computation). Such a problem does also exist

for job ordering optimization and pool weight optimization

methods. In contrast, with DHSA, we can guarantee that all

slots must be busy whenever there are pending tasks, making

slot utilization at maximum.

Dynamic slot allocation. Underlying PI-DHSA and PD-

DHSA are two different concepts or definitions of fairness. PI-

Algorithm 3 The pseudo-code for SEPB.

When there is a idle slot:

1: The speculative scheduler (e.g., LATE) checks first whether there are new
straggled tasks.

2: if there are straggled tasks and runningSpeculativeTasks � Speculative-
Cap then

3: Check a set of multiple jobs for pending tasks.
4: if there are pending tasks for multiple jobs then
5: Allocate the idle slot to a pending task.
6: else
7: Create a speculative task and allocate the idle slot to it.
8: end if
9: else

10: Allocate the idle slot to a pending task.
11: end if

Algorithm 4 The pseudo-code for PreScheduler.

When a heartbeat is received from a compute node n:

1: Compute allowableIdleMapSlots, extraIdleMapSlots, idleReduceSlots.
2: for (Job j in job set J of sorted fair-share priority order) do
3: if Job j has local data in node n but no allowableIdleMapSlots then � The

condition to consider PreScheduler.
4: if extraIdleMapSlots � 0 then � Case 1: using extraIdleMapSlots
5: Allocate map slot to Job j.
6: end if
7: if EnableDHSA=true && idleReduceSlots � 0 then � Case 2: using

idleReduceSlots in DHSA.
8: Allocate map slot to Job j.
9: end if

10: end if
11: end for

DHSA follows strictly the definition of fairness given by tradi-

tional HFS, i.e., the slots are fairly shared across pools within

each phase (e.g., map-phase, reduce-phase), but independent

across phases. In contrast, PD-DHSA gives a new definition of

fairness from the perspective of pools, i.e., each pool shares the

total number of map and reduce slots from the map phase and

reduce phase fairly with other pools. Due to varied definitions

of fairness, there are different priorities and possibilities for

slot movements between map-phase and reduce-phase (i.e.,

moving map slots to reduce-phase for reduce tasks, and vice

versa) for PI-DHSA and PD-DHSA. For PI-DHSA, the map

slots always satisfy the map tasks first before giving to reduce

tasks, and vice versa. Thus, the inter-phase slot movement can

only occur when one typed slots (e.g., map slots) are enough

while the other typed slots (e.g., reduce slots) are insufficient,

i.e., two cases: Case 2 and Case 3 in Section 2.1.1 of the main

file. In contrast, for PD-DHSA, all the slots of a pool always

attempt to satisfy the tasks within the pool first before yielding

to other pools. The inter-phase slot movement appears when



IEEE TRANSACTIONS ON CLOUD COMPUTING 6

it exists a pool whose one typed slots (e.g., map slots) share

is larger than its corresponding typed slots demand while its

share of the other typed slots (e.g., reduce slots) is not enough.

However, all four scenarios (e.g., Case 1, Case 2, Case 3, Case

4) mentioned in Section 2.1.1 of the main file could have such

a kind of pools, implying that the inter-phase slot movement

can occur in all the four scenarios. That is, it is more likely to

have inter-phase slot movement for PD-DHSA than PI-DHSA

during the dynamic slot allocation process.

APPENDIX D
MOTIVATION FOR SLOT PRESCHEDULING

The delay scheduler was original proposed by Zaharia et

al. [37] and has implemented in Hadoop to improve the data

locality. However, in the real implementation of Hadoop Fair

Scheduler (HFS) and FIFO scheduler (e.g., Hadoop Version

1.2.), the load balance is considered on task scheduling

(including delay scheduling). In HFS and FIFO, their task

assignment processes both follow that, when a tasktracker

connects to the jobTracker in a heartbeat, instead of allowing

all its idle slots to be allocated directly, it will first consider

the load balance issue across slave nodes by determining

dynamically how many running tasks should be allowed per

slave node during runtime (i.e., allowable idle slots), implying

that it may allow only a part of idle slots of a tasktracker

to be allocated rather than all in order for load balancing, or

even don’t allow any idle slots to be allocated. For example, in

Figure 6 of the main file, the current load for Tasktracker 2 and

4 are over and at the load balancing line, respectively. In that

case, Hadoop will not allow any slot allocation and just skip

Tasktracker 2 and 4 directly before arriving at scheduling part

(e.g., delay scheduling, fair scheduling, speculative scheduling,

etc), although they have idle slots. Thus, when J1 is in the

headed allocation list based on their share priority, it is not

allowed to schedule tasks to TaskTracker 2 and 3 as there is

no allowable idle slots due to load balancing constrain. For

Tasktracker 1 and 3, delay scheduler will skip J1 for a while

since there is no local data available for J1. That is, no matter

which tasktracker connects to the jobTracker in a heartbeat, J1
will be delayed to schedule within a time limit. Based on these

observations by reviewing the Hadoop source code, we thus

proposed PreScheduler to maximize the data locality while

not hurting fairness by relaxing the load balance constrain and

allowing J1 to use the extra idle slots (i.e, idle slots above the

workload balancing line in Figure 6 of the main file) when

the Tastracker 2 or 4 connected.

APPENDIX E
LOAD BALANCE AND FAIRNESS EVALUATION
FOR SLOT PRESCHEDULING

Figure 11 and 12 of the main file have illustrated that Slot

Prescheduling can improve the data locality and performance

of MapReduce jobs. To validate our claim in Section 2.3 of

the main file that Slot PreScheduling can improve the data

locality at the expense of load balance across slave nodes while

having no negative impact on the fairness of MapReduce jobs,

we perform an experiment with one to ten jobs (J1 to J10)

from Table 3, with each job in a separate pool. A cluster is

considered as load balanced if the numbers of running tasks

across slave nodes (i.e., taskTrackers) are the same. We define

a unbalanced degree as the average of square deviation of

running tasks across slave node over the whole computation

time t, i.e.,

UnbalancedDegree�t� �

�t
0
f�t�

t
.

where f�t� denotes the square deviation at instant time t, i.e.,

f�t� �
n�

i�1

�l�i, t� � l�t��2.

where n, l�i, t�, and l�t� denote the number of tasktrackers, the

load for the ith tasktracker, and the mean load for tasktrackers

at time t, respectively.

We call it fair for the cluster when all demanding pools

share (possess) the same amount of resources. Similarly, we

measure the unfairness degree using the average of square

deviation of allocated resources across pools over the whole

computation time t, i.e.,

UnfairnessDegree�t� �

�t
0
g�t�

t
.

where g�t� denotes the square deviation of allocated resources

at instant time t, i.e.,

g�t� �
p�

i�1

�s�i, t� � s�t��2.

where p, s�i, t�, and s�t� denote the number of pools, the

allocated resources for the ith pool, and the mean allocated

resources for pools at time t, respectively.

Figure 4 presents the unbalanced and unfairness results for

batch jobs. We see in Figure 4(b) that the Slot PreScheduling

has better fairness results, but it has a bit worse load balance

degree given by Figure 4(a), validating our statement.

APPENDIX F
DISCUSSION ON THE PERFORMANCE OF DIF-
FERENT PERCENTAGES OF BORROWED MAP
AND REDUCE SLOTS

Fig. 5: The performance results with different percentages of map
(or reduce) slots borrowed.



IEEE TRANSACTIONS ON CLOUD COMPUTING 7

(a) the unbalanced degree for the cluster (b) the unfairness degree for pools

Fig. 4: The results of unbalanced degree and unfairness degree for batch jobs.

Instead of borrowing all unused map (or reduce) slots

for overloaded reduce (or map) tasks in our DHSA, we

provide users with two configuration arguments percentageOf-
BorrowedMapSlots and percentageOfBorrowedReduceSlots to

limit the amount of borrowed map/reduce slots, and ensure that

tasks at the map/reduce phase are not starved. It is meaningful

and important when users want to reserve some unused slots

for incoming tasks, instead of lending all of them to other

phases or pools. To show its impact on the performance, we

perform an experiment with sort benchmark (320 map tasks

and 200 reduce tasks) by varying values of arguments.

Let Pec M and Pec R denote percentageOfBor-
rowedMapSlots and percentageOfBorrowedReduceSlots
respectively. Figure 5 presents the performance results under

varied argument configurations. All speedup results are

calculated with respect to the case when Pec M � 0 and

Pec R � 0. We consider four cases: (1). Vary the value

of Pec R from 0 to 100 while fix Pec M � 0; (2). Vary

the value of Pec R while set Pec M � 100; (3). Vary

the value of Pec M while fix Pec R � 0; (4). Vary the

value of Pec M while fix Pec R � 100. We can see

that, the performance improves by increasing either Pec M
or Pec R. Particularly, there is a significant performance

improvement(i.e., approximate 29%) when we fix the value of

Pec R and increase the value of Pec M . It is because there

are plenty of reduce tasks (e.g., 200 reduce tasks) but only

18 reduce slots. Thus increasing the percentage value of map

slots (Pec M ) that can be borrowed would let more reduce

tasks be scheduled using borrowed map slots, reducing the

number of computation waves of reduce tasks and improving

the utilization as well as performance of the Hadoop cluster.

REFERENCES
[1] F. Ahmad, S. Y. Lee, M. Thottethodi, T. N. Vijaykumar. PUMA: Purdue MapReduce

Benchmarks Suite. ECE Technical Reports, 2012.
[2] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu, B. Saha, and E.

Harris, Reining in the outliers in map-reduce clusters using mantri, in OSDI’10,
pp. 1-16, 2010.

[3] Apache Hadoop NextGen MapReduce (YARN). http://hadoop.apache
.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html.

[4] J. Chao, R. Buyya. MapReduce Programming Model for .NET-Based Cloud Com-
puting. In Euro-Par’09, pp. 417-428, 2009.

[5] Q. Chen, C. Liu, Z. Xiao, Improving MapReduce Performance Using Smart
Speculative Execution Strategy. IEEE Transactions on Computer, 2013.

[6] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters, In OSDI’04, pp. 107-113, 2004.

[7] Z.H. Guo, G. Fox, M. Zhou, Y. Ruan.Improving Resource Utilization in MapReduce.
In IEEE Cluster’12. pp. 402-410, 2012.

[8] Z. H. Guo, G. Fox, and M. Zhou.Investigation of data locality and fairness in
MapReduce. In MapReduce’12, pp, 25-32, 2012.

[9] Z. H. Guo, G. Fox, and M. Zhou. Investigation of Data Locality in MapReduce. In
IEEE/ACM CCGrid’12, pp, 419-426, 2012.

[10] Hadoop. http://hadoop.apache.org.
[11] M. Hammoud and M. F. Sakr. Locality-Aware Reduce Task Scheduling for MapRe-

duce. In IEEE CLOUDCOM’11. pp. 570-576, 2011.
[12] M. Hammoud, M. S. Rehman, M. F. Sakr. Center-of-Gravity Reduce Task Schedul-

ing to Lower MapReduce Network Traffic. In IEEE CLOUD’12, pp. 49-58, 2012.
[13] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and S. Babu.

Starfish: A Self-tuning System for Big Data Analytics. In CIDR’11, pp. 261C272,
2011.

[14] H. Herodotou and S. Babu, Profiling, What-if Analysis, and Costbased Optimization
of MapReduce Programs. In Proc. of the VLDB Endowment, Vol. 4, No. 11, 2011.

[15] S Ibrahim, H Jin, L Lu, B He, S Wu. Adaptive Disk I/O Scheduling for MapReduce
in Virtualized Environment, In IEEE ICPP’11, pp.335-344, 2011.

[16] Y. C. Kwon, M. Balazinska, B. Howe, and J. Rolia. SkewTune: mitigating skew in
mapreduce applications. In SIGMOD’12. pp. 25-36, 2012.

[17] Max-Min Fairness (Wikipedia). http://en.wikipedia.org/wiki/Max-min fairness.
[18] B. Moseley, A. Dasgupta, R. Kumar, T. Sarl, On scheduling in map-reduce and

flow-shops. In SPAA’11, pp. 289-298, 2011.
[19] C. Oğuz, M.F. Ercan, Scheduling multiprocessor tasks in a two-stage flow-shop

environment. Proceedings of the 21st international conference on Computers and
industrial engineering, pp. 269-272, 1997.

[20] B. Palanisamy, A. Singh, L. Liu and B. Jain, Purlieus: Localityaware Resource
Allocation for MapReduce in a Cloud, In SC’11, pp. 1-11, 2011.

[21] J. Polo, C. Castillo, D. Carrera, et al. Resource-aware Adaptive Scheduling for
MapReduce Clusters. In Middleware’11, pp. 187-207, 2011.

[22] J. Tan, X. Q. Meng, L. Zhang. Coupling task progress for MapReduce resource-
aware scheduling. In IEEE Infocom’13, pp. 1618-1626, 2013.

[23] J. Tan, S. C. Meng, X. Q. Meng, L. Zhang. Improving ReduceTask data locality
for sequential MapReduce jobs. In IEEE Infocom’13, pp. 1627-1635, 2013.

[24] S.J. Tang, B.S. Lee, and B.S. He. MROrder: Flexible Job Ordering Optimization
for Online MapReduce Workloads. In Euro-Par’13, pp. 291-304, 2013.

[25] S.J. Tang, B.S. Lee, R. Fan and B.S. He. Dynamic Job Ordering and Slot
Configurations for MapReduce Workloads, CORR (Technical Report), 2013.

[26] S.J. Tang, B.S. Lee, and B.S. He. Dynamic Slot Allocation Technique for MapRe-
duce Clusters. In IEEE Cluster’13, pp. 1-8, 2013.

[27] S.J. Tang, B.S. Lee, B.S. He, H.K. Liu. Long-Term Resource Fairness: Towards
Economic Fairness on Pay-as-you-use Computing Systems. In ACM ICS’14, 2014.

[28] J. Polo, Y. Becerra, et al. Deadline-Based MapReduce Workload Management,
IEEE Transactions on Network and Service Management, 2013.

[29] PUMA Datasets. https://sites.google.com/site/farazahmad/pumadatasets.
[30] M. A. Rodriguez, R. Buyya. Deadline based Resource Provisioning and Scheduling

Algorithm for Scientific Workflows on Clouds, IEEE Transaction on Cloud Comput-
ing, 2014.

[31] A. Verma, L. Cherkasova, R.H. Campbell, Orchestrating an Ensemble of MapRe-
duce Jobs for Minimizing Their Makespan, IEEE Transaction on dependency and
secure computing, 2013.

[32] A. Verma, L. Cherkasova, R. Campbell. Two Sides of a Coin: Optimizing the
Schedule of MapReduce Jobs to Minimize Their Makespan and Improve Cluster
Performance. In IEEE MASCOTS, pp. 11-18, 2012.

[33] Y. Wang, W. Shi, Budget-Driven Scheduling Algorithms for Batches of MapReduce
Jobs in Heterogeneous Clouds, IEEE Transaction on Cloud Computing, 2014

[34] T. White. Hadoop: The Definitive Guide, 3rd Version. O’Reilly Media, 2012.
[35] M. Zaharia, A. Konwinski , A.D. Joseph , R. Katz , I. Stoica, Improving MapReduce

performance in heterogeneous environments. In OSDI’08, pp.29-42, 2008.
[36] M. Zaharia, D. Borthakur, J. Sarma, K. Elmeleegy,S. Schenker,I. Stoica, Job

Scheduling for Multi-user Mapreduce Clusters. Technical Report EECS-2009-55,
UC Berkeley Technical Report (2009).

[37] M. Zaharia, D. Borthakur, J. Sarma, K. Elmeleegy,S. Schenker,I. Stoica, Delay
scheduling: A simple technique for achieving locality and fairness in cluster
scheduling. In EuroSys’10, pp. 265-278, 2010.

[38] C. Zhou, B.S. He, Transformation-based Monetary Cost Optimizations for Work-
flows in the Cloud, IEEE Transaction on Cloud Computing, 2014.




